Bismuth fluoroborate glasses with compositions xBi2O3·(40 ? x)LiF·60 B2O3 (x = 0, 5, 10, 15, and 20) are synthesized by melt-quench method. XRD pattern is obtained for all the samples to confirm their amorphous nature. FTIR spectroscopy is carried out for the reported samples. It reflects the effect of replacement of a non-oxide group (LiF) with an oxide group (Bi2O3) in the glass network, due to the presence of the various absorption bands and their shifting with such replacement, assigning a role of network modifier to Bi2O3. Density and molar volume show an increase in their values with increase in Bi2O3 concentration. Theoretical optical basicity is calculated for the reported samples, which shows a decreasing trend with the increasing concentration of Bi2O3. 1. Introduction B2O3 is one of the best glass formers due to the sheet-like structure of boron-oxygen triangles in borate glasses, with their ability to connect themselves to form a network [1, 2]. A random arrangement of various atomic and molecular species is easily formed in borate glasses which is the basic requirement for glass formation. A number of modifications in the properties of the borate glasses, with the addition of alkali halides, have been reported so far [3–9]. The inclusion of LiF in the borate glass network brings out some structural changes [3], which in turn become responsible for the change in various properties. Some new units like BO2F, BO2F2, BOF3, and BO3F are formed by the replacement of few oxygen atoms by fluorine ions [4–6]. Also, there may be an increase in the number of polyhedral groups of boron and oxygen, which in turn increases the number of nonbridging oxygen atoms [7–9]. Bi2O3 possesses high third-order nonlinear optical susceptibility caused by high density and refractive index [10, 11]. This property makes it to have numerous nonlinearity applications such as optical switching [12, 13], supercontinuum generation [14], and wavelength conversion [15]. Luminescent materials have always been studied by researchers for their wide range of applications. Noto reported the luminescence spectroscopy of some systems containing rare earth ions [16, 17]. Also, bismuth ion acts as an efficient luminescent activator with applications in lasers as a sensitizer for some rare earth ions [18, 19]. The purpose of this paper is to report the change in structural and physical properties of glasses with the stepwise replacement of LiF by Bi2O3. The addition of provides an opportunity for the new molecular units to be formed with more numbers of NBOs. 2. Experimental Details
References
[1]
C. Boussard-Plédel, M. Le Floch, G. Fonteneau et al., “The structure of a boron oxyfluoride glass, an inorganic cross-linked chain polymer,” Journal of Non-Crystalline Solids, vol. 209, no. 3, pp. 247–256, 1997.
[2]
G. D. Chryssikos, M. S. Bitsis, J. A. Kapoutsis, and E. I. Kamitsos, “Vibrational investigation of lithium metaborate-metaaluminate glasses and crystals,” Journal of Non-Crystalline Solids, vol. 217, no. 2-3, pp. 278–290, 1997.
[3]
C. Boussard-Plédel, G. Fonteneau, and J. Lucas, “Boron oxyfluoride glasses in the BOF system: new polymeric spaghetti-type glasses,” Journal of Non-Crystalline Solids, vol. 188, no. 1-2, pp. 147–152, 1995.
[4]
N. Soga, “Elastic moduli and fracture toughness of glass,” Journal of Non-Crystalline Solids, vol. 73, no. 1–3, pp. 305–313, 1985.
[5]
I. Z. Hager, “Elastic moduli of boron oxyfluoride glasses: experimental determinations and application of Makishima and Mackenzie's theory,” Journal of Materials Science, vol. 37, no. 7, pp. 1309–1313, 2002.
[6]
I. Z. Hager and M. El-Hofy, “Investigation of spectral absorption and elastic moduli of lithium haloborate glasses,” Physica Status Solidi A, vol. 198, no. 1, pp. 7–17, 2003.
[7]
J. E. Shelby and L. K. Downie, “Properties and structure of sodium fluoroborate glasses,” Physics and Chemistry of Glasses, vol. 30, no. 4, pp. 151–154, 1989.
[8]
G. D. Chryssikos, E. I. Kamitsos, A. P. Patsis, M. S. Bitsis, and M. A. Karakassides, “The devitrification of lithium metaborate: polymorphism and glass formation,” Journal of Non-Crystalline Solids, vol. 126, no. 1-2, pp. 42–51, 1990.
[9]
E. I. Kamitsos, A. P. Patsis, and G. D. Chryssikos, “Infrared reflectance investigation of alkali diborate glasses,” Journal of Non-Crystalline Solids, vol. 152, no. 2-3, pp. 246–257, 1993.
[10]
C. Hwang, S. Fujino, and K. Morinaga, “Density of Bi2O3-B2O3 binary melts,” Journal of the American Ceramic Society, vol. 87, no. 9, pp. 1677–1682, 2004.
[11]
I. I. Oprea, H. Hesse, and K. Betzler, “Optical properties of bismuth borate glasses,” Optical Materials, vol. 26, no. 3, pp. 235–237, 2004.
[12]
S. Fujiwara, T. Suzuki, N. Sugimoto, H. Kanbara, and K. Hirao, “THz optical switching in glasses containing bismuth oxide,” Journal of Non-Crystalline Solids, vol. 259, no. 1–3, pp. 116–120, 1999.
[13]
N. Sugimoto, “Ultrafast optical switches and wavelength division multiplexing (WDM) amplifiers based on bismuth oxide glasses,” Journal of the American Ceramic Society, vol. 85, no. 5, pp. 1083–1088, 2002.
[14]
G. Brambilla, F. Koizumi, V. Finazzi, and D. J. Richardson, “Supercontinuum generation in tapered bismuth silicate fibres,” Electronics Letters, vol. 41, no. 14, pp. 795–797, 2005.
[15]
J. H. Lee, K. Kikuchi, T. Nagashima, T. Hasegawa, S. Ohara, and N. Sugimoto, “All fiber-based 160-Gbit/s add/drop multiplexer incorporating a 1-m-long Bismuth Oxide-based ultra-high nonlinearity fiber,” Optics Express, vol. 13, no. 18, pp. 6864–6869, 2005.
[16]
V. Di Noto, M. Bettinelli, M. Furlani, S. Lavina, and M. Vidali, “Conductivity, luminescence and vibrational studies of the poly(ethylene glycol) 400 electrolyte based on europium trichloride,” Macromolecular Chemistry and Physics, vol. 197, no. 1, pp. 375–388, 1996.
[17]
V. Di Noto, M. Furlani, and S. Lavina, “Synthesis, characterization and ionic conductivity of poly[(oligoethylene oxide) ethoxysilane] and poly[(oligoethylene oxide) ethoxysilane] / (EuCl3)0.67,” Polymers for Advanced Technologies, vol. 7, no. 9, pp. 759–767, 1996.
[18]
C. H. Kim, H. L. Park, and S. I. Mho, “Photoluminescence of Eu3+ and Bi3+ in Na3YSi3O9,” Solid State Communications, vol. 101, no. 2, pp. 109–113, 1997.
[19]
A. M. Srivastava, “Luminescence of divalent bismuth in M2+ BPO5 (M2+ = Ba2+, Sr2+ and Ca2+),” Journal of Luminescence, vol. 78, no. 4, pp. 239–243, 1998.
[20]
L. Baia, R. Stefan, W. Kiefer, and S. Simon, “Structural of characteristics of B2O3-Bi2O3 glasses with high transition metal oxide content,” Journal of Raman Spectroscopy, vol. 36, no. 3, pp. 262–266, 2005.
[21]
B. V. R. Chowdari and Z. Rong, “Study of the fluorinated lithium borate glasses,” Solid State Ionics, vol. 78, no. 1-2, pp. 133–142, 1995.
[22]
P. Pa?cu?a, M. Bo?ca, S. Rada, M. Culea, I. Bratu, and E. Culea, “FTIR spectroscopic study of Gd2O3-Bi2O3-B2O3 glasses,” Journal of Optoelectronics and Advanced Materials, vol. 10, no. 9, pp. 2416–2419, 2008.
[23]
S. Bale and S. Rahman, “Glass structure and transport properties of Li2O containing zinc bismuthate glasses,” Optical Materials, vol. 31, no. 2, pp. 333–337, 2008.
[24]
A. Bajaj and A. Khanna, “Crystallization of bismuth borate glasses,” Journal of Physics Condensed Matter, vol. 21, no. 3, Article ID 035112, 2009.
[25]
I. Ardelean and S. Cora, “FT-IR, Raman and UV-VIS spectroscopic studies of copper doped 3Bi2O3·B2O3 glass matix,” Journal of Materials Science, vol. 19, no. 6, pp. 584–588, 2008.
[26]
V. Kundu, R. L. Dhiman, A. S. Maan, D. R. Goyal, and S. Arora, “Characterization and electrical conductivity of Vanadium doped strontium bismuth borate glasses,” Journal of Optoelectronics and Advanced Materials, vol. 12, no. 12, pp. 2373–2379, 2010.
[27]
E. I. Kamitsos, M. A. Karakassides, and G. D. Chryssikos, “Vibrational spectra of magnesium-sodium-borate glasses. 2. Raman and mid-infrared investigation of the network structure,” Journal of Physical Chemistry, vol. 91, no. 5, pp. 1073–1079, 1987.
[28]
F. Chen, S. Dai, Q. Nie, T. Xu, X. Shen, and X. Wang, “Glass formation and optical band gap studies on Bi2O3-B2O3-BaO ternary system,” Journal Wuhan University of Technology, Materials Science Edition, vol. 24, no. 5, pp. 716–720, 2009.
[29]
M. El-Hofy and I. Z. Hager, “Ionic conductivity in lithium haloborate glasses,” Physica Status Solidi A, vol. 199, no. 3, pp. 448–456, 2003.
[30]
A. El-Adawy and Y. Moustafa, “Elastic properties of bismuth borate glasses,” Journal of Physics D, vol. 32, no. 21, pp. 2791–2796, 1999.
[31]
E. Mansour, G. M. El-Damrawi, Y. M. Moustafa, S. Abd El-Maksoud, and H. Doweidar, “Polaronic conduction in barium borate glasses containing iron oxide,” Physica B, vol. 293, no. 3-4, pp. 268–275, 2001.
[32]
J. A. Duffy and M. D. Ingram, “Optical basicity-IV: influence of electronegativity on the Lewis basicity and solvent properties of molten oxyanion salts and glasses,” Journal of Inorganic and Nuclear Chemistry, vol. 37, no. 5, pp. 1203–1206, 1975.