Indoles are common building blocks of new pharmacologically active chemical entities in drug discovery and development. Due to their poor ionization in electrospray ionization mass spectrometry, atmospheric pressure chemical ionization (APCI) is the method of choice for LC-MS analysis of simple indoles. Three types of ions, including [M ? 1]+, , and [M + H]+, can be observed in APCI but the relative intensities of these ions may vary depending upon the structural properties of the indoles and the mass spectral source conditions. We report in this paper the observation of [M ? 1]+ ions for methylindoles in an Agilent multimode ion source and the investigation into their formation. By means of tandem mass spectrometric experiments performed on a Thermo Fisher Scientific LTQ ion trap mass spectrometer equipped with an APCI source, it was found that [M ? 1]+ ions can be generated from ions upon-collision induced dissociation. This suggests that the [M ? 1]+ ions might be the in-source fragmentation product of ions. It was proposed that both [M ? 1]+ and ions are probably generated through a charge transfer mechanism while [M + H]+ ions are the product of proton transfer. The basicity of the analytes might play an important role in dictating which ionization mechanism is operative. For 3-methylindole, the charge transfer process appears to be more dominant than for 2-methylindole since the former is less basic. As expected, substituting electron withdrawing groups on 3-methylindole, such as fluorine, promotes charge transfer and vice versa. Therefore, it is expected that formation of the [M ? 1]+ ions is more pronounced for less basic methylindoles. 1. Introduction Liquid chromatography-mass spectrometry (LC-MS) has been an increasingly popular tool for both qualitative and quantitative analysis of drugs and their related substances in all stages of drug development owing to its high sensitivity and specificity [1]. This includes, but is not limited to, the analysis of drug metabolites, degradation products, process impurities, extractables/leachables from packaging materials. Several atmospheric pressure ionization (API) techniques, including electrospray ionization (ESI), atmospheric pressure chemical ionization (APCI), atmospheric pressure photoionization (APPI), have been successfully interfaced with various mass spectrometric detectors and are widely used in pharmaceutical analysis. However, no single technique ionizes all types of pharmaceutical compounds. Generally, ESI ionizes polar compounds most efficiently and APPI is more suitable for nonpolar
References
[1]
A. P. Bruins, “Atmospheric-pressure-ionization mass spectrometry. II. Applications in pharmacy, biochemistry and general chemistry,” Trends in Analytical Chemistry, vol. 13, no. 2, pp. 81–90, 1994.
[2]
S. S. Cai and J. A. Syage, “Comparison of atmospheric pressure photoionization, atmospheric pressure chemical ionization, and electrospray ionization mass spectrometry for analysis of lipids,” Analytical Chemistry, vol. 78, no. 4, pp. 1191–1199, 2006.
[3]
M. P. Balogh, “Source design and the utility of multimode ionization,” Spectroscopy, vol. 19, no. 1, pp. 52–56, 2004.
[4]
W. P. Duncan and P. D. Perkins, “LC-MS with simultaneous electrospray and atmospheric pressure chemical ionization,” American Laboratory, vol. 37, no. 6, pp. 28–33, 2005.
[5]
R. T. Gallagher, M. P. Balogh, P. Davey, M. R. Jackson, I. Sinclair, and L. J. Southern, “Combined electrospray ionization-atmospheric pressure chemical ionization source for use in high-throughput LC-MS applications,” Analytical Chemistry, vol. 75, no. 4, pp. 973–977, 2003.
[6]
L. C. Short, K. A. Hanold, S. S. Cai, and J. A. Syage, “Electrospray ionization/atmospheric pressure photoionization multimode source for low-flow liquid chromatography/mass spectrometric analysis,” Rapid Communications in Mass Spectrometry, vol. 21, no. 10, pp. 1561–1566, 2007.
[7]
F. E. Chen and J. Huang, “Reserpine: a challenge for total synthesis of natural products,” Chemical Reviews, vol. 105, no. 12, pp. 4671–4706, 2005.
[8]
S. Katchamart, D. M. Stresser, S. S. Dehal, D. Kupfer, and D. E. Williams, “Concurrent flavin-containing monooxygenase down-regulation and cytochrome P-450 induction by dietary indoles in rat: implications for drug- drug interaction,” Drug Metabolism and Disposition, vol. 28, no. 8, pp. 930–936, 2000.
[9]
T. S. Kaufman, “Synthesis of optically-active isoquinoline and indole alkaloids employing the Pictet-Spengler condensation with removable chiral auxiliaries bound to nitrogen,” New Methods For the Asymmetric Synthesis of Nitrogen Heterocycles, pp. 99–147, 2005.
[10]
A. Q. N. Manzar, I. Hussain, and I. Azhar, “Spectrophotometric determination of some indole drugs,” Journal of Chemical Society of Pakistan, vol. 22, no. 2, pp. 111–114, 2000.
[11]
M. Prudhomme, “Staurosporines and structurally related indolocarbazoles as antitumor agents,” Anticancer Agents from Natural Products, pp. 499–517, 2005.
[12]
S. E. Bell, R. G. Ewing, G. A. Eiceman, and Z. Karpas, “Atmospheric pressure chemical ionization of alkanes, alkenes, and cycloalkanes,” Journal of the American Society for Mass Spectrometry, vol. 5, no. 3, pp. 177–185, 1994.
[13]
D. I. Carroll, I. Dzidic, R. N. Stillwell, K. D. Haegele, and E. C. Horning, “Atmospheric pressure ionization mass spectrometry: corona discharge ion source for use in liquid chromatograph-mass spectrometer-computer analytical system,” Analytical Chemistry, vol. 47, no. 14, pp. 2369–2373, 1975.
[14]
B. A. Thomson, “Atmospheric pressure ionization and liquid chromatography/mass spectrometry—together at last,” Journal of the American Society for Mass Spectrometry, vol. 9, no. 3, pp. 187–193, 1998.
[15]
H. Kambara, “Determination of impurities in gases by atmospheric pressure ionization mass spectrometry,” Analytical Chemistry, vol. 49, no. 2, pp. 270–275, 1977.
[16]
A. Nicoletti, C. Paradisi, and G. Scorrano, “Ion chemistry of chloroethanes in air at atmospheric pressure,” Rapid Communications in Mass Spectrometry, vol. 15, no. 20, pp. 1904–1911, 2001.
[17]
E. Moyano, M. McCullagh, M. T. Galceran, and D. E. Games, “Supercritical fluid chromatography-atmospheric pressure chemical ionisation mass spectrometry for the analysis of hydroxy polycyclic aromatic hydrocarbons,” Journal of Chromatography A, vol. 777, no. 1, pp. 167–176, 1997.
[18]
M. Marx and C. Djerassi, “Mass spectrometry in structural and stereochemical problems. CXLIX. The question of ring expansion in the fragmentation of 13C-labeled nitrogen heterocycles,” Journal of the American Chemical Society, vol. 90, no. 3, pp. 678–681, 1968.
[19]
J. C. Powers, “The mass spectrometry of simple indoles,” Journal of Organic Chemistry, vol. 33, no. 5, pp. 2044–2050, 1968.
[20]
S. Safe, W. D. Jamieson, and O. Hutzinger, “Ion kinetic energy and mass spectra of isomeric methyl indoles,” Organic Mass Spectrometry, vol. 6, no. 1, pp. 33–37, 1972.
[21]
B. B. Schneider and D. D. Y. Chen, “Collision-induced dissociation of ions within the orifice-skimmer region of an electrospray mass spectrometer,” Analytical Chemistry, vol. 72, no. 4, pp. 791–799, 2000.
[22]
B. B. Schneider, D. J. Douglas, and D. D. Y. Chen, “Ion fragmentation in an electrospray ionization mass spectrometer interface with different gases,” Rapid Communications in Mass Spectrometry, vol. 15, no. 4, pp. 249–257, 2001.
[23]
B. M. Kolakowski, J. S. Grossert, and L. Ramaley, “The importance of both charge exchange and proton transfer in the analysis of polycyclic aromatic compounds using atmospheric pressure chemical ionization mass spectrometry,” Journal of the American Society for Mass Spectrometry, vol. 15, no. 3, pp. 301–310, 2004.
[24]
J. W. Hager and S. C. Wallace, “Two-Laser photoionization supersonic jet mass spectrometry of aromatic molecules,” Analytical Chemistry, vol. 60, no. 1, pp. 5–10, 1988.
[25]
B. S. Andonovski, B. T. Bogdanov, and G. M. Stojkovic, “Correlation of the proton affinity and atomic charges with the constant of dissociation of some indoles,” Bulletin of the Chemists and Technologists of Macedonia, vol. 21, no. 1, pp. 39–42, 2002.
[26]
R. L. Hinman and J. Lang, “The protonation of indoles. Basicity studies. The dependence of acidity functions on indicator structure,” Journal of the American Chemical Society, vol. 86, no. 18, pp. 3796–3806, 1964.
[27]
F. J. Hoyuelos, B. García, S. Ibeas et al., “Protonation sites of indoles and benzoylindoles,” European Journal of Organic Chemistry, no. 6, pp. 1161–1171, 2005.