全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Time-Resolved Photoluminescence Spectroscopy Evaluation of CdTe and CdTe/CdS Quantum Dots

DOI: 10.5402/2012/894385

Full-Text   Cite this paper   Add to My Lib

Abstract:

CdTe and CdTe/CdS quantum dots (QDs) were prepared in aqueous solutions using thioglycolic acid as a stabilizing agent. The photoluminescence (PL) wavelength of the QDs depended strongly on the size of CdTe cores and the thickness of CdS shells. Being kept at room temperature for 130 days, the PL wavelength of CdTe and CdTe/CdS QDs was red-shifted. However the red-shifted degree of CdTe QDs is larger than that of CdTe/CdS QDs. The size of CdTe QDs and the thickness of CdS play important roles for the red-shift of PL spectra of CdTe/CdS QDs. In contrast, the full width at half maximum of PL spectra of CdTe and CdTe/CdS QDs almost remained unchanged. This is ascribed to the effects of Cd2+ and TGA in solutions on the growth of CdTe and CdTe/CdS QDs. This associated with the variation of surface state of the QDs during store. The results demonstrate that CdTe/CdS core/shell QDs have high stability compared with CdTe QDs due to a CdS shell. 1. Introduction Quantum dots (QDs) have attracted considerable interest in the past two decades because of their excellent properties such as narrower and symmetric emission spectra, broad absorption spectra, and better photostability than traditional fluorescent labels [1–5]. An organic synthetic approach in trioctylphosphine or trioctylphosphine oxide at high temperature has been well developed to prepare highly luminescent II–VI QDs [6]. However, the QDs are insoluble in an aqueous solution and not compatible for biological applications. Compared with organic strategies, an alternative approach to produce water soluble QDs is to directly synthesize QDs in an aqueous solvent. Such approach is less expensive, highly reproducible, less toxic, and more biocompatible [7]. It is easy to control QD size in an aqueous approach because of a low nucleation and growth rate. Early aqueous CdTe QDs with a low stability were prepared in the presence of thioglycolic acid (TGA) as the capping agent by using a reaction between Cd2+ and NaHTe solution [8]. These QDs were easily subjected to the photooxidation and photobleaching when used to labeling in living cells, resulting in significant PL quenching [9]. To improve the photostability, epitaxial growth of an inorganic shell on the surface of CdTe QDs in aqueous solution was explored in a few research groups, similar to growing a shell of ZnS, CdS, or ZnSe on CdSe cores in organic solutions [6, 10–13]. It has been illustrated that epitaxial growth of an inorganic shell with a broader band gap on the surface of luminescent QDs is an ideal approach to improve the properties of QDs

References

[1]  D. R. Larson, W. R. Zipfel, R. M. Williams et al., “Water-soluble quantum dots for multiphoton fluorescence imaging in vivo,” Science, vol. 300, no. 5624, pp. 1434–1436, 2003.
[2]  A. P. Alivisatos, “Semiconductor clusters, nanocrystals, and quantum dots,” Science, vol. 271, no. 5251, pp. 933–937, 1996.
[3]  J. Liu, H. Li, W. Wang et al., “Use of ester-terminated polyamidoamine dendrimers for stabilizing quantum dots in aqueous solutions,” Small, vol. 2, no. 8-9, pp. 999–1002, 2006.
[4]  Q. Lu, S. S. Hu, D. W. Pang, and Z. K. He, “Direct electrochemistry and electrocatalysis with hemoglobin in water-soluble quantum dots film on glassy carbon electrode,” Chemical Communications, vol. 20, no. 20, pp. 2584–2585, 2005.
[5]  Y. X. Xu, J. G. Liang, C. G. Hu, F. S. Wang, S. Hu, and Z. K. He, “A hydrogen peroxide biosensor based on the direct electrochemistry of hemoglobin modified with quantum dots,” Journal of Biological Inorganic Chemistry, vol. 12, no. 3, pp. 421–427, 2007.
[6]  C. B. Murray, D. J. Norris, and M. G. Bawendi, “Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites,” Journal of the American Chemical Society, vol. 115, no. 19, pp. 8706–8715, 1993.
[7]  S. Wang, N. Mamedova, N. A. Kotov, W. Chen, and J. Studer, “Antigen/Antibody Immunocomplex from CdTe Nanoparticle Bioconjugates,” Nano Letters, vol. 2, no. 8, pp. 817–822, 2002.
[8]  A. L. Rogach, L. Katsikas, A. Kornowski, D. Su, A. Eychmuller, and H. Weller, “Synthesis and characterization of thiol-stabilized CdTe nanocrystals,” Berichte der Bunsengesellschaft für Physikalische Chemie, vol. 100, pp. 1772–1778, 1996.
[9]  Y. Zhang, J. He, P. N. Wang et al., “Time-dependent photoluminescence blue shift of the quantum dots in living cells: effect of oxidation by singlet oxygen,” Journal of the American Chemical Society, vol. 128, no. 41, pp. 13396–13401, 2006.
[10]  M. A. Hines and P. Guyot-Sionnest, “Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals,” Journal of Physical Chemistry, vol. 100, no. 2, pp. 468–471, 1996.
[11]  B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec et al., “(CdSe)ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites,” Journal of Physical Chemistry B, vol. 101, no. 46, pp. 9463–9475, 1997.
[12]  M. Danek, K. F. Jensen, C. B. Murray, and M. G. Bawendi, “Synthesis of luminescent thin-film CdSe/ZnSe quantum dot composites using CdSe quantum dots passivated with an overlayer of ZnSe,” Chemistry of Materials, vol. 8, no. 1, pp. 173–180, 1996.
[13]  P. Reiss, J. Bleuse, and A. Pron, “Highly Luminescent CdSe/ZnSe core/shell nanocrystals of low size dispersion,” Nano Letters, vol. 2, no. 7, pp. 781–784, 2002.
[14]  X. Peng, M. C. Schlamp, A. V. Kadavanich, and A. P. Alivisatos, “Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility,” Journal of the American Chemical Society, vol. 119, no. 30, pp. 7019–7029, 1997.
[15]  T. Trindade, P. O'Brien, and N. L. Pickett, “Nanocrystalline semiconductors: synthesis, properties, and perspectives,” Chemistry of Materials, vol. 13, no. 11, pp. 3843–3858, 2001.
[16]  Y. Yu, Y. Lai, X. Zheng, J. Wu, Z. Long, and C. Liang, “Synthesis of functionalized CdTe/CdS QDs for spectrofluorimetric detection of BSA,” Spectrochimica Acta Part A, vol. 68, no. 5, pp. 1356–1361, 2007.
[17]  C. L. Wang, H. Zhang, J. H. Zhang, M. J. Li, H. Z. Sun, and B. Yang, “Application of ultrasonic irradiation in aqueous synthesis of highly fluorescent CdTe/CdS core-shell nanocrystals,” The Journal of Physical Chemistry C, vol. 111, no. 6, pp. 2465–2469, 2007.
[18]  H. Peng, L. Zhang, C. Soeller, and J. Travas-Sejdic, “Preparation of water-soluble CdTe/CdS core/shell quantum dots with enhanced photostability,” Journal of Luminescence, vol. 127, no. 2, pp. 721–726, 2007.
[19]  Z. M. Yuan, A. Y. Zhang, Y. Q. Cao, J. Yang, Y. N. Zhu, and P. Yang, “Effect of mercaptocarboxylic acids on luminescent properties of CdTe quantum dots,” Journal of Fluorescence, vol. 22, no. 1, pp. 121–127, 2011.
[20]  H. Bao, Y. Gong, Z. Li, and M. Gao, “Enhancement effect of illumination on the photoluminescence of water-soluble CdTe nanocrystals: toward highly fluorescent CdTe/CdS core-shell structure,” Chemistry of Materials, vol. 16, no. 20, pp. 3853–3859, 2004.
[21]  M. Jones, J. Nedeljkovic, R. J. Ellingson, A. J. Nozik, and G. Rumbles, “Photoenhancement of luminescence in colloidal CdSe quantum dot solutions,” Journal of Physical Chemistry B, vol. 107, no. 41, pp. 11346–11352, 2003.
[22]  S. Rawalekar, S. Kaniyankandy, S. Verma, and H. N. Ghosh, “Ultrafast charge carrier relaxation and charge transfer dynamics of CdTe/CdS core-shell quantum dots as studied by femtosecond transient absorption spectroscopy,” Journal of Physical Chemistry C, vol. 114, no. 3, pp. 1460–1466, 2010.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133