This study aims to investigate the potential of honey discrimination by visible and near-infrared (vis-NIR) spectroscopy with wavelength reduction. A total of 80 samples from four brands of honey produces were measured by a mobile fiber-type USB4000 spectrophotometer with recorded wavelength range of 380.17~939.98?nm for model calibration. Firstly, principal components analysis (PCA) was used for extracting principal components (PCs). Next, the first seven PCs, which accounted for 97% of variance of the spectra, were combined separately with support vector machine (SVM) and linear discriminate analysis (LDA) to develop PC-SVM and PC-LDA models, both of which achieved 100% discrimination accuracy. In addition, the spectra were subjected to successive wavelength reduction rates (WRRs) of 2x, x = 1–9, for wavelength reduction. The PC-LDA and PC-SVM models developed for these reduced wavelengths produced almost the same performance as compared with those developed for original full wavelengths. This experiment suggests that vis-NIR spectral wavelengths can be reduced at large spacing interval, which allows easing data analysis as well as developing a simpler and cheaper sensor for honey discrimination in practice. 1. Introduction Honey is considered as healthy and wholesome food with curative properties as it contains plenty of nutrients and plays effective antimicrobial effects against many bacteria [1]. Honey produces are quite popular in China. Generally, consumers classify honeys in terms of color, smell, and taste. Although sensory evaluation is easy to use, subjective experience is often biased and low accurate. Using chemical test methods in laboratory may be accurate but quite time- and cost-consuming, which produces unsafe guarantee to ordinary consumers and hinders the development of apiculture. Thus, it is necessary to develop a convenient and accurate way for honey discrimination. Recently, visible and near-infrared (vis-NIR) spectroscopy has received wide attention as it is suitable for nondestructive analysis of biological and biomedical materials. For example, the vis-NIR spectroscopy can be used for discriminating tea beverages [2], coffee [3], milk power [4], and other materials [5–7]. Using this technique, Gallardo-Velázquez et al. [8] and Zhu et al. [9] qualified adulterants in some local origins of honey. Although these researches presented good accuracy for honey discrimination, the calibration models were developed using full range of wavelengths, which would result in high complexity in computation and cause difficulty in practical
References
[1]
B. Kilicoglu, K. Kismet, S. S. Kilicoglu et al., “Effects of honey as a scolicidal agent on the hepatobiliary system,” World Journal of Gastroenterology, vol. 14, no. 13, pp. 2085–2088, 2008.
[2]
Q. Chen, J. Zhao, M. Liu, and J. Cai, “Nondestructive identification of tea (Camellia sinensis L.) varieties using FT-NIR spectroscopy and pattern recognition,” Czech Journal of Food Sciences, vol. 26, no. 5, pp. 360–367, 2008.
[3]
G. Lv and H. Yang, “Discrimination of different brands of Nescafé coffee using vis-NIR spectroscopy and comparative study,” Advances in Biochemical Engineering, vol. 1-2, pp. 163–166, 2011.
[4]
R. M. Balabin and S. V. Smirnov, “Melamine detection by mid- and near-infrared (MIR/NIR) spectroscopy: a quick and sensitive method for dairy products analysis including liquid milk, infant formula, and milk powder,” Talanta, vol. 85, no. 1, pp. 562–568, 2011.
[5]
N. Sinelli, L. Cerretani, V. D. Egidio, A. Bendini, and E. Casiraghi, “Application of near (NIR) infrared and mid (MIR) infrared spectroscopy as a rapid tool to classify extra virgin olive oil on the basis of fruity attribute intensity,” Food Research International, vol. 43, no. 1, pp. 369–375, 2010.
[6]
H. Yang, B. Kuang, and A. M. Mouazen, “In situ determination of growing stages and harvest time of tomato (Lycopersicon esculentum) fruits using fiber-optic visible-near-infrared (vis-NIR) spectroscopy,” Applied Spectroscopy, vol. 65, no. 8, pp. 931–938, 2011.
[7]
H. Yang, B. Kuang, and A. M. Mouazen, “Quantitative analysis of soil nitrogen and carbon at a farm scale using visible and near infrared spectroscopy coupled with wavelength reduction,” European Journal of Soil Science, vol. 63, no. 3, pp. 410–420, 2012.
[8]
T. Gallardo-Velázquez, G. Osorio-Revilla, M. Z. D. Loa, and Y. Rivera-Espinoza, “Application of FTIR-HATR spectroscopy and multivariate analysis to the quantification of adulterants in Mexican honeys,” Food Research International, vol. 42, no. 3, pp. 313–318, 2009.
[9]
X. Zhu, S. Li, Y. Shan et al., “Detection of adulterants such as sweeteners materials in honey using near-infrared spectroscopy and chemometrics,” Journal of Food Engineering, vol. 101, no. 1, pp. 92–97, 2010.
[10]
Y. Yang, P. Nie, H. Yang, and Y. He, “Rapid recognition method of nectar plant based on visible-near infrared spectroscopy,” Transactions of the Chinese Society of Agricultural Engineering, vol. 26, no. 3, pp. 238–242, 2010 (Chinese).
[11]
J. P. Reed, D. Devlin, S. R. R. Esteves, R. Dinsdale, and A. J. Guwy, “Performance parameter prediction for sewage sludge digesters using reflectance FT-NIR spectroscopy,” Water Research, vol. 45, no. 8, pp. 2463–2472, 2011.
[12]
R. M. Balabin, R. Z. Safieva, and E. I. Lomakina, “Near-infrared (NIR) spectroscopy for motor oil classification: from discriminant analysis to support vector machines,” Microchemical Journal, vol. 98, no. 1, pp. 121–128, 2011.
[13]
R. Noori, A. R. Karbassi, A. Moghaddamnia et al., “Assessment of input variables determination on the SVM model performance using PCA, Gamma test, and forward selection techniques for monthly stream flow prediction,” Journal of Hydrology, vol. 401, no. 3-4, pp. 177–189, 2011.
[14]
H. Kim, B. L. Drake, and H. Park, “Multiclass classifiers based on dimension reduction with generalized LDA,” Pattern Recognition, vol. 40, no. 11, pp. 2939–2945, 2007.
[15]
R. M. Balabin, R. Z. Safieva, and E. I. Lomakina, “Gasoline classification using near infrared (NIR) spectroscopy data: comparison of multivariate techniques,” Analytica Chimica Acta, vol. 671, no. 1-2, pp. 27–35, 2010.
[16]
H. C. Kim, D. Kim, and S. Y. Bang, “Extensions of LDA by PCA mixture model and class-wise features,” Pattern Recognition, vol. 36, no. 5, pp. 1095–1105, 2003.