全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Implementation of WiMAX (IEEE802.16.d) OFDM Baseband Transceiver-Based Multiwavelet OFDM on a Multi-Core Software-Defined Radio Platform

DOI: 10.5402/2011/750878

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper investigates a new approach to the adaptation of the WiMAX IEEE802.16d baseband, the physical layer performance of wireless communications systems based on OFDM multiwavelet transform, using half values of coding rates, 16-QAM, and DMWT-OFDM by being applied to the SFF SDR development platform. In the new structure of WiMAX IEEE802.16d baseband, is reduce further the level of interference, and spectral efficiency is increased. The proposed design was model tested, and its performance was found to comply with International Telecommunications Union channel (ITU) models that have been elected for the wireless channel in the simulation process. The simulation approved the proposed design which achieved much lower bit error rates, increased signal-to-noise power ratio (SNR), robustness for multipath channels and does not require cyclically prefixed guard interval and have higher spectral efficiency than OFDM based on DWT and FFT also can be used as an alternative conventional OFDM in WiMAX IEEE802.16d baseband. 1. Introduction Over the recent years, there has been important and growing demand for greater bandwidth. The problem with the existing transmission media similar fiber, coaxial and twisted pair is costly and complex to layout in rural areas. A solution to this problem is given by IEEE standard 802.16, famous as WiMax. WiMax could possibly erase the suburban and rural blackout areas that currently have no broadband internet access. WiMax short for “Worldwide Interoperability for microwave access” is the broadband internet technology which is growing quickly across the world. The frequency spectrum for WiMax has given by the IEEE is 2–11?GHz. The wireless communications industry is gaining momentum in both fixed and mobile applications. The nonstop increase in demand for all types of wireless services (voice, data, and multimedia) is fueling the require for higher capacity and data rates not only in fixed but too in mobile applications. WLANs and 3G cellular networks are undergo several problems for obtaining a complete mobile broadband access, bounded by factors such as bandwidth, coverage area, or structure costs. In this context, WiMAX appears to accomplish these requirements, providing vehicular mobility and high service areas and data rates. Defined to provide broadband wireless access, it is increasingly gaining concern as an alternative last-mile technology to DSL lines and cable modems, and a complete technology where wireless networks are not enough developed. IEEE 802.16d was developed for WiMAX wireless communication, which is

References

[1]  IEEE 802.16, IEEE standard for local and metropolitan area networks—part 16: air interface for fixed broadband wireless access systems, 2004.
[2]  WIMAX Forum, “Documentation, technlogy whitepapers,” 2010, http://www.wimaxforum.org/resources/documents.
[3]  J. G. Andrews, A. Ghosh, and R. Muhamed, Fundamentals to WIMAX Understanding Broadband Wireless Networking, Prentice-Hall, 2007.
[4]  A. Ghosh, D. R. Wolter, J. G. Andrews, and R. Chen, “Broadband wireless access with WiMax/802.16: current performance benchmarks, and future potential,” IEEE Communications Magazine, vol. 43, no. 2, pp. 129–136, 2005.
[5]  A. Graps, “Introduction to wavelets,” IEEE Computational Science & Engineering, vol. 2, no. 2, pp. 50–61, 1995.
[6]  A. M. Reza, “From fourier transform to wavelet transform, basic concepts,” White Paper 27, Spire Laboratory, University of Wisconsin-Milwaukee, 1999.
[7]  B. G. Negash and H. Nikookar, “Wavelet-based multicarrier transmission over multipath wireless channels,” Electronics Letters, vol. 36, no. 21, pp. 1787–1788, 2000.
[8]  B. G. Negash and H. Nikookar, “Wavelet based OFDM for wireless channels,” in Proceedings of the Vehicular Technology Conference, International Research Center for Telecommunications-Transmission and Radar, Faculty of Information Technology and Systems, Delft University of Technology, 2001.
[9]  G. W. Wornell and A. V. Oppenheim, “Wavelet-based representations for a class of self-similar signals with application to fractal modulation,” IEEE Transactions on Information Theory, vol. 38, no. 2, pp. 785–800, 1992.
[10]  M. J. Manglani and A. E. Bell, “Wavelet modulation in Gaussian and Rayleigh fading channels,” in Proceedings of the IEEE Military Communications Conference (MILCOM '01), Electrical Engineering, Virginia Polytechnic Institute and State University, McLean, Va, USA, October, 2001.
[11]  M. A. Kadhim and W. Ismail, “Implementation of wimax IEEE802. 16d baseband transceiver based wavelet OFDM on multi-core software-defined radio platform,” European Journal of Scientific Research, vol. 42, no. 2, pp. 303–313, 2010.
[12]  V. Strela, P. N. Heller, G. Strang, P. Topiwala, and C. Heil, “The application of multiwavelet filterbanks to image processing,” IEEE Transactions on Image Processing, vol. 8, no. 4, pp. 548–563, 1999.
[13]  M. B. Martin, Applications of multiwavelets to image compression, M.S. thesis, Electrical Engineering Department ,Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, Va, USA, 1999.
[14]  T. J. Yew, Multiwavelets and scalable video compression, Ph.D. thesis, Department of Electrical and Computer Engineering, National University of Singapore, 2002.
[15]  A. H. Kattoush, W. A. Mahmoud, and S. Nihad, “The performance of multiwavelets based OFDM system under different channel conditions,” Digital Signal Processing, vol. 20, no. 2, pp. 472–482, 2009.
[16]  J. S. Geronimo, D. P. Hardin, and P. R. Massopust, “Fractal functions and wavelet expansions based on several scaling functions,” Journal of Approximation Theory, vol. 78, no. 3, pp. 373–401, 1994.
[17]  Texas Instruments Incorporated. TMD SFF SDR DP, 2009, http://www.ti.com/sdr.
[18]  MathWorks, Math Works express, Target Language Compiler, 2002.
[19]  International Telecommunication Union, Recommendation, ITU-R M.1225, Guidelines for Evaluation of Radio Transmission Technologies for IMT-2000, 2002.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133