全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Effect of Indoxyl Sulfate on Oxidative Stress, Apoptosis, and Monocyte Chemoattractant Protein-1 in Leukocytes

DOI: 10.1155/2014/412389

Full-Text   Cite this paper   Add to My Lib

Abstract:

This study showed that indoxyl sulfate, an uremic toxin present in the serum of patients with chronic kidney disease, increases oxidative stress and apoptosis in human neutrophils and reduces the production of monocyte chemoattractant protein-1 (MCP-1) by peripheral blood mononuclear cell (PBMC). It is possible that these effects caused by this toxin contribute to vascular injury of the endothelium and decreased response to infectious insults, respectively. 1. Introduction Uremic toxins are solutes that accumulate in the plasma of patients with loss of renal function [1–4]. More than 100 uremic solutes and toxins have been classified by the “European Uremic Toxin Work Group” (EUTox) [5, 6]. Uremic toxins have been considered one of the main factors that contribute to the state of inflammation [7–9] and have been associated with immune dysfunction in patients with chronic kidney disease (CKD) [10–17]. They have also been associated with cardiovascular disease (CVD), particularly because of their effects on different cells types leading to the generation of reactive oxygen species (ROS) such as hydrogen peroxide (H2O2), hydroxyl radical (OH-), and superoxide anion ( ) [18, 19] that contribute to oxidization of lipids, protein, and DNA damage. In addition, uremic plasma induces synthesis of inflammatory mediators as IL-1 [20], IL-6 [20], IL-12 [21], TNF- [22], and IL-10 [23] and chemokine as IL-8 [22] and Monocyte chemoattractant protein-1 (MCP-1) [24, 25]. MCP-1 is one of the key chemokines that regulate migration and infiltration of monocytes/macrophages and it has been demonstrated to be induced and involved in various diseases. Migration of monocytes from the blood stream across the vascular endothelium is required for routine immunological surveillance of tissues, as well as in response to inflammation. Besides, MCP-1 is produced by a variety of cell types, either constitutively or after induction by toxins, oxidative stress, cytokines, or growth factors. The immunosuppression observed in patients with CKD has also been associated with uremic toxins that contribute to dysregulated apoptosis of leukocytes and other cell types [9, 26–28]. The uremic toxin indoxyl sulfate (IS) has been associated with inflammation and renal interstitial fibrosis and both processes contribute to progression of CKD [26]. This toxin originates from the intestinal metabolism of tryptophan, which is metabolized into indole by the action of tryptophanase produced by bacteria such as Escherichia coli present in the intestinal microbiota. The newly synthesized indole is absorbed

References

[1]  G. Glorieux and R. Vanholder, “New uremic toxins: which solutes should be removed?” Contributions to Nephrology, vol. 168, pp. 117–128, 2011.
[2]  E. Schepers, G. Glorieux, and R. Vanholder, “The gut: the forgotten organ in uremia?” Blood Purification, vol. 29, no. 2, pp. 130–136, 2010.
[3]  I. W. Wu, K. H. Hsu, C. C. Lee, et al., “P-cresylsulfate and indoxyl sulfate predict progression of chronic kidney disease,” Nephrology Dialysis Transplantation, vol. 26, pp. 938–947, 2011.
[4]  T. Niwa, “Uremic toxicity of indoxyl sulfate,” Nagoya Journal of Medical Science, vol. 72, no. 1-2, pp. 1–11, 2010.
[5]  R. Vanholder, A. Argilés, U. Baurmeister et al., “Uremic toxicity: present state of the art,” International Journal of Artificial Organs, vol. 24, no. 10, pp. 695–725, 2001.
[6]  G. Cohen, G. Glorieux, P. Thornalley et al., “Review on uraemic toxins III: recommendations for handling uraemic retention solutes in vitro. Towards a standardized approach for research on uraemia,” Nephrology Dialysis Transplantation, vol. 22, pp. 3381–3390, 2007.
[7]  W. H. H?rl, “Hemodialysis membranes: interleukins, biocompatibility, and middle molecules,” Journal of the American Society of Nephrology, vol. 13, supplement 1, pp. S62–S71, 2002.
[8]  G. Glorieux, R. Vanholder, and N. Lameire, “Uraemic retention and apoptosis: what is the balance for the inflammatory status in uraemia?” European Journal of Clinical Investigation, vol. 33, no. 8, pp. 631–634, 2003.
[9]  C. Sardenberg, P. Suassuna, M. C. C. Andreoli et al., “Effects of uraemia and dialysis modality on polymorphonuclear cell apoptosis and function,” Nephrology Dialysis Transplantation, vol. 21, no. 1, pp. 160–165, 2006.
[10]  G. Cohen and W. H. H?rl, “Resistin as a cardiovascular and atherosclerotic risk factor and uremic toxin,” Seminars in Dialysis, vol. 22, no. 4, pp. 373–377, 2009.
[11]  S. Coaccioli, M. L. Standoli, R. Biondi et al., “Assessment of the oxidative stress markers in patients with chronic renal insufficiency undergoing dialysis treatment,” Clinica Terapeutica, vol. 161, no. 5, pp. 441–444, 2010.
[12]  T. Kuragano, A. Kida, M. Furuta et al., “The impact of β2-microglobulin clearance on the risk factors of cardiovascular disease in hemodialysis patients,” ASAIO Journal, vol. 56, no. 4, pp. 326–332, 2010.
[13]  P. R. Aveles, C. R. Criminácio, S. Gon?alves et al., “Association between biomarkers of carbonyl stress with increased systemic inflammatory response in different stages of chronic kidney disease and after renal transplantation,” Nephron: Clinical Practice, vol. 116, no. 4, pp. c294–c299, 2010.
[14]  S. Coaccioli, M. L. Standoli, R. Biondi et al., “Open comparison study of oxidative stress markers between patients with chronic renal failure in conservative therapy and patients in haemodialysis,” Clinica Terapeutica, vol. 161, no. 5, pp. 435–439, 2010.
[15]  M. Morita, S. Yano, T. Yamaguchi, M. Yamauchi, and T. Sugimoto, “Phenylacetic acid stimulates reactive oxygen species generation and tumor necrosis factor-α secretion in vascular endothelial cells,” Therapeutic Apheresis and Dialysis, vol. 15, no. 2, pp. 147–150, 2011.
[16]  J. Himmelfarb, P. Stenvinkel, T. A. Ikizler, and R. M. Hakim, “Perspectives in renal medicine: the elephant in uremia: oxidant stress as a unifying concept of cardiovascular disease in uremia,” Kidney International, vol. 62, no. 5, pp. 1524–1538, 2002.
[17]  B. Feng, Y.-Q. Zhang, J. Mu et al., “Uraemic serum induces dysfunction of vascular endothelial cells: role of ubiquitin-proteasome pathway,” Experimental Physiology, vol. 96, no. 8, pp. 801–815, 2011.
[18]  T. Niwa and H. Shimizu, “Indoxyl sulfate induces nephrovascular senescence,” Journal of Renal Nutrition, vol. 22, no. 1, pp. 102–106, 2012.
[19]  A. F. Chen, D. D. Chen, A. Daiber, et al., “Free radical biology of the cardiovascular system,” Clinical Science, vol. 2, pp. 73–91, 2012.
[20]  R. H. Mak, W. Cheung, R. D. Cone, and D. L. Marks, “Mechanisms of disease: cytokine and adipokine signaling in uremic cachexia,” Nature Clinical Practice Nephrology, vol. 2, no. 9, pp. 527–534, 2006.
[21]  T. X. Pedersen, C. J. Binder, G. N. Fredrikson, J. Nilsson, S. Bro, and L. B. Nielsen, “The pro-inflammatory effect of uraemia overrules the anti-atherogenic potential of immunization with oxidized LDL in apoE-/- mice,” Nephrology Dialysis Transplantation, vol. 25, no. 8, pp. 2486–2491, 2010.
[22]  M. A. Aminzadeh, M. V. Pahl, C. H. Barton, N. S. Doctor, and N. D. Vaziri, “Human uraemic plasma stimulates release of leptin and uptake of tumour necrosis factor-α in visceral adipocytes,” Nephrology Dialysis Transplantation, vol. 24, no. 12, pp. 3626–3631, 2009.
[23]  V. Montinaro, G. P. Iaffaldano, S. Granata et al., “Emotional symptoms, quality of life and cytokine profile in hemodialysis patients,” Clinical Nephrology, vol. 73, no. 1, pp. 36–43, 2010.
[24]  J. Tri?anes, E. Salido, J. Fernández et al., “Type 1 diabetes increases the expression of proinflammatory cytokines and adhesion molecules in the artery wall of candidate patients for kidney transplantation,” Diabetes Care, vol. 35, no. 2, pp. 427–433, 2012.
[25]  K. Pawlak, D. Pawlak, and M. Mysliwiec, “Impaired renal function and duration of dialysis therapy are associated with oxidative stress and proatherogenic cytokine levels in patients with end-stage renal disease,” Clinical Biochemistry, vol. 40, no. 1-2, pp. 81–85, 2007.
[26]  H. Shimizu, D. Bolati, A. Adijiang et al., “Senescence and dysfunction of proximal tubular cells are associated with activated p53 expression by indoxyl sulfate,” The American Journal of Physiology: Cell Physiology, vol. 299, no. 5, pp. C1110–C1117, 2010.
[27]  M. Nakayama, K. Nakayama, W.-J. Zhu et al., “Polymorphonuclear leukocyte injury by methylglyoxal and hydrogen peroxide: a possible pathological role for enhanced oxidative stress in chronic kidney disease,” Nephrology Dialysis Transplantation, vol. 23, no. 10, pp. 3096–3102, 2008.
[28]  G. Cohen, J. Raupachova, T. Wimmer, R. Deicher, and W. H. H?rl, “The uraemic retention solute para-hydroxy-hippuric acid attenuates apoptosis of polymorphonuclear leukocytes from healthy subjects but not from haemodialysis patients,” Nephrology Dialysis Transplantation, vol. 23, no. 8, pp. 2512–2519, 2008.
[29]  T. Niwa, “Indoxyl sulfate is a nephro-vascular toxin,” Journal of Renal Nutrition, vol. 20, no. S5, p. S6, 2010.
[30]  R. Vanholder, R. De Smet, G. Glorieux, et al., “Classification, and interindividual variability,” Kidney International, vol. 5, pp. 1934–1943, 2003.
[31]  D. Bolati, H. Shimizu, Y. Higashiyama, F. Nishijima, and T. Niwa, “Indoxyl sulfate induces epithelial-to-mesenchymal transition in rat kidneys and human proximal tubular cells,” The American Journal of Nephrology, vol. 34, no. 4, pp. 318–323, 2011.
[32]  C.-K. Chiang, T. Tanaka, and M. Nangaku, “Dysregulated oxygen metabolism of the kidney by uremic toxins: review,” Journal of Renal Nutrition, vol. 22, no. 1, pp. 77–80, 2012.
[33]  M. Motojima, A. Hosokawa, H. Yamato, T. Muraki, and T. Yoshioka, “Uremic toxins of organic anions up-regulate PAI-1 expression by induction of NF-κB and free radical in proximal tubular cells,” Kidney International, vol. 63, no. 5, pp. 1671–1680, 2003.
[34]  L. Dou, E. Bertrand, C. Cerini et al., “The uremic solutes p-cresol and indoxyl sulfate inhibit endothelial proliferation and wound repair,” Kidney International, vol. 65, no. 2, pp. 442–451, 2004.
[35]  F. C. Barreto, D. V. Barreto, S. Liabeuf et al., “Serum indoxyl sulfate is associated with vascular disease and mortality in chronic kidney disease patients,” Clinical Journal of the American Society of Nephrology, vol. 4, no. 10, pp. 1551–1558, 2009.
[36]  A. B?yum, “Isolation of mononuclear cells and granulocytes from human blood,” Scandinavian Journal of Clinical and Laboratory Investigation, vol. 21, supplement 97, pp. 77–89, 1968.
[37]  M. Cendoroglo, B. L. Jaber, V. S. Balakrishnan, M. Perianayagam, A. J. King, and B. J. G. Pereira, “Neutrophil apoptosis and dysfunction in uremia,” Journal of the American Society of Nephrology, vol. 10, no. 1, pp. 93–100, 1999.
[38]  J. A. Metcalf, J. I. Gallin, W. N. Naussef, et al., Laboratory Manual of Neutrophil Function, Raven Press, New York, NY, USA, 1986.
[39]  A. Mozar, L. Louvet, C. Godin, et al., “Indoxyl sulphate inhibits osteoclast differentiation and function,” Nephrology, Dialysis, Transplantation, vol. 27, no. 6, pp. 2176–2181, 2012.
[40]  D. A. Bass, J. W. Parce, and L. R. Dechatelet, “Flow cytometric studies of oxidative product formation by neutrophils: a graded response to membrane stimulation,” Journal of Immunology, vol. 130, no. 4, pp. 1910–1917, 1983.
[41]  X. Zhou and P. He, “Improved measurements of intracellular nitric oxide in intact microvessels using 4,5-diaminofluorescein diacetate,” The American Journal of Physiology: Heart and Circulatory Physiology, vol. 301, no. 1, pp. H108–H114, 2011.
[42]  H. Shimizu, D. Bolati, Y. Higashiyama, F. Nishijima, K. Shimizu, and T. Niwa, “Indoxyl sulfate upregulates renal expression of MCP-1 via production of ROS and activation of NF-κB, p53, ERK, and JNK in proximal tubular cells,” Life Sciences, vol. 90, no. 13-14, pp. 525–530, 2012.
[43]  T. Kawakami, R. Inagi, T. Wada, T. Tanaka, T. Fujita, and M. Nangaku, “Indoxyl sulfate inhibits proliferation of human proximal tubular cells via endoplasmic reticulum stress,” The American Journal of Physiology: Renal Physiology, vol. 299, no. 3, pp. F568–F576, 2010.
[44]  B. Halliwell, K. Zhao, and M. Whiteman, “Nitric oxide and peroxynitrite: the ugly, the uglier and the not so good: a personal view of recent controversies,” Free Radical Research, vol. 31, no. 6, pp. 651–669, 1999.
[45]  R. A. Zager, A. C. M. Johnson, and S. Lund, “Uremia impacts renal inflammatory cytokine gene expression in the setting of experimental acute kidney injury,” The American Journal of Physiology: Renal Physiology, vol. 297, no. 4, pp. F961–F970, 2009.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133