The behaviour of an amperometric biosensor based on parallel substrates conversion for steady-state condition has been discussed. This analysis contains a nonlinear term related to enzyme kinetics. Simple and closed form of analytical expressions of concentrations and of biosensor current is derived. This model was originally reported by Vytautas Aseris and his team (2012). Concentrations of substrate and product are expressed in terms of single dimensionless parameter. A new approach to Homotopy perturbation method (HPM) is employed to solve the system of nonlinear reaction diffusion equations. Furthermore, in this work, the numerical solution of the problem is also reported using Matlab program. The analytical results are compared with the numerical results. The analytical result provided is reliable and efficient to understand the behavior of the system. 1. Introduction A biosensor is an analytical device, used for the detection of an analyte, which combines a biological component with a physiochemical detector [1]. Analyzed substrate is biochemically converted to a product when the biosensor operation is being undertaken. In most of the cases, biosensor response is directly proportional to the concentration of the reaction product [2]. The amperometric biosensors have proved to be reliable in various systems with applications in the field of medicine, food technology, and the environmental industry [3, 4]. The understanding of the kinetic peculiarities of biosensors is of crucial importance for their design. The mathematical modeling is rather widely used to improve the efficiency of the biosensors design and to optimize their configuration [5–8]. Since 1970s, various mathematical models of biosensors have been developed and used successfully to study and optimize analytical characteristics of biosensors [9–14]. Mathematical modeling of two-enzyme biosensors has been started in 1980s with the modeling of an amperometric monolayer enzyme electrode with two coimmobilized enzymes [15, 16]. Later, nonlinear mathematical models have been developed for amperometric two-enzyme biosensors with different enzymes [17, 18]. The numerical method of solving partial differential equations is to make calculation at all intervals of substrates concentration and at different diffusion and enzymatic reaction rates. The nonstationary diffusion equations [19], containing a nonlinear term related to the enzymatic reaction, are carried out using the implicit difference scheme [20]. In recent years, analytical solutions are reported for various types of biosensors
References
[1]
A. Turner, G. Wilson, and I. Kaube, Biosensors: Fundamentals and Applications, Oxford University Press, Oxford, UK, 1987.
[2]
F. W. Scheller, F. Schubert, and J. Fedrowitz, Frontiers in Biosensorics, Birkhauser, Basel, Switzerland, 1997.
[3]
A. Sadana and N. Sadana, Handbook of Biosensors and Biosensor Kinetics, Elsevier, Amsterdam, The Netherlands, 2010.
[4]
D. M. Fraser, Biosensors in the Body, Continuous in Vivo Monitoring, John Wiley and Sons, New York, NY, USA, 1997.
[5]
L. S. Ferreira, M. B. De Souza Jr., J. O. Trierweiler, O. Broxtermann, R. O. M. Folly, and B. Hitzmann, “Aspects concerning the use of biosensors for process control: experimental and simulation investigations,” Computers and Chemical Engineering, vol. 27, no. 8-9, pp. 1165–1173, 2003.
[6]
J. R. D. Corcuera, R. Cavalieri, J. Powers, and J. Tang, “Amperometric enzyme biosensor optimization using mathematical modeling,” in Proceeding of the/Case 18th Annual International Meeting (ASAE '04), page papers No. 047030, American Society of Agricultural Engineers, Ottawa, Canada, August 2004.
[7]
C. Amatore, A. I. Oleinick, and I. Svir, “Construction of optimal quasi-conformal mappings for the 2D-numerical simulation of diffusion at microelectrodes. Part 1: principle of the method and its application to the inlaid disk microelectrode,” Journal of Electroanalytical Chemistry, vol. 597, no. 1, pp. 69–76, 2006.
[8]
I. Stamatin, C. Berlic, and A. Vaseashta, “On the computer-aided modelling of analyte-receptor interactions for an efficient sensor design,” Thin Solid Films, vol. 495, no. 1-2, pp. 312–315, 2006.
[9]
L. D. Mell and J. T. Maloy, “A model for the amperometric enzyme electrode obtained through digital simulation and applied to the immobilized glucose oxidase system,” Analytical Chemistry, vol. 47, no. 2, pp. 299–307, 1975.
[10]
J. P. Kernevez, Enzyme Mathematics. Studies in Mathematics and Its Applications, Elsevier Science, Amsterdam, The Netherlands, 1980.
[11]
J. Kulys, “The development of new analytical systems based on biocatalysts,” Analytical Letters, vol. 14, article 377, 1981.
[12]
P. N. Bartlett and K. F. E. Pratt, “Modelling of processes in enzyme electrodes,” Biosensors and Bioelectronics, vol. 8, no. 9-10, pp. 451–462, 1993.
[13]
M. E. G. Lyons, J. C. Greer, C. A. Fitzgerald, T. Bannon, and P. N. Barlett, “Reaction/diffusion with Michaelis-Menten kinetics in electroactive polymer films. Part 1. The steady-state amperometric response,” Analyst, vol. 121, no. 6, pp. 715–731, 1996.
[14]
P. Pérusse and D. Leech, “Dual electrode cyclic voltammetry under computer control using graphical programming of a bipotentiostat,” Instrumentation Science and Technology, vol. 28, no. 1, pp. 59–70, 2000.
[15]
J. J. Kulys, V. V. Sorochinskii, and R. A. Vidziunaite, “Transient response of bienzyme electrodes,” Biosensors, vol. 2, no. 3, pp. 135–146, 1986.
[16]
V. V. Sorochinskii and B. I. Kurganov, “Steady-state kinetics of cyclic conversions of substrate in amperometric bienzyme sensors,” Biosensors and Bioelectronics, vol. 11, no. 3, pp. 225–238, 1996.
[17]
T. Schulmeister, J. Rose, and F. Scheller, “Mathematical modelling of exponential amplification in membrane-based enzyme sensors,” Biosensors and Bioelectronics, vol. 12, no. 9-10, pp. 1021–1030, 1997.
[18]
A. Neykov and V. Rangelova, “Mathematical modeling of the biosensor systems,” Biotechnology and Biotechnological Equipment, vol. 1998, no. 2, pp. 100–109, 1998.
[19]
R. Baronas, F. Ivanauskas, and J. Kulys, “Modelling a biosensor based on the heterogeneous microreactor,” Journal of Mathematical Chemistry, vol. 25, no. 2-3, pp. 245–252, 1999.
[20]
W. F. Ames, Numerical Methods for Partial Differential Equations, Academic Press, New York, NY, USA, 2nd edition, 1977.
[21]
A. Eswari and L. Rajendran, “Analytical solution of steady state current at a microdisk biosensor,” Journal of Electroanalytical Chemistry, vol. 641, no. 1-2, pp. 35–44, 2010.
[22]
P. Manimozhi, A. Subbiah, and L. Rajendran, “Solution of steady-state substrate concentration in the action of biosensor response at mixed enzyme kinetics,” Sensors and Actuators, B: Chemical, vol. 147, no. 1, pp. 290–297, 2010.
[23]
A. Meena and L. Rajendran, “Mathematical modeling of amperometric and potentiometric biosensors and system of non-linear equations—homotopy perturbation approach,” Journal of Electroanalytical Chemistry, vol. 644, no. 1, pp. 50–59, 2010.
[24]
A. Eswari and L. Rajendran, “Analytical solution of steady-state current an enzyme-modified microcylinder electrodes,” Journal of Electroanalytical Chemistry, vol. 648, no. 1, pp. 36–46, 2010.
[25]
S. Loghambal and L. Rajendran, “Mathematical modeling in amperometric oxidase enzyme-membrane electrodes,” Journal of Membrane Science, vol. 373, no. 1-2, pp. 20–28, 2011.
[26]
A. Eswari and L. Rajendran, “Analytical expressions pertaining to the concentration of catechol, o-quinone and current at PPO-modified microcylinder biosensor for diffusion-kinetic model,” Journal of Electroanalytical Chemistry, vol. 660, no. 1, pp. 200–208, 2011.
[27]
K. Venugopal, A. Eswari, and L. Rajendran, “Mathematical model for steady state current at PPO-modified micro-cylinder biosensors,” Journal of Biomedical Science and Engineering, vol. 4, pp. 631–641, 2011.
[28]
L. Rajendran and S. Anitha, “Reply to ‘ Comments on analytical solution of amperometric enzymatic reactions based on HPM ’,” Electrochimica Acta, vol. 102, pp. 474–476, 2013.
[29]
V. Aseris, R. Baronas, and J. Kulys, “Modeling the biosensor utilizing parallel substrate conversion,” Journal of Electroanalytical Chemistry, vol. 685, pp. 63–71, 2012.
[30]
J.-H. He, “Application of homotopy perturbation method to nonlinear wave equations,” Chaos, Solitons and Fractals, vol. 26, no. 3, pp. 695–700, 2005.
[31]
Q. K. Ghori, M. Ahmed, and A. M. Siddiqui, “Application of homotopy perturbation method to squeezing flow of a newtonian fluid,” International Journal of Nonlinear Sciences and Numerical Simulation, vol. 8, no. 2, pp. 179–184, 2007.
[32]
T. ?zi? and A. Yildirim, “A comparative study of He's homotopy perturbation method for determining frequency-amplitude relation of a nonlinear oscillator with discontinuities,” International Journal of Nonlinear Sciences and Numerical Simulation, vol. 8, no. 2, pp. 243–248, 2007.
[33]
S.-J. Li and Y.-X. Liu, “An improved approach to nonlinear dynamical system identification using PID neural networks,” International Journal of Nonlinear Sciences and Numerical Simulation, vol. 7, no. 2, pp. 177–182, 2006.
[34]
M. M. Mousa and S. F. Ragab, “Application of the homotopy perturbation method to linear and nonlinear schr?dinger equations,” Zeitschrift fur Naturforschung— A Journal of Physical Sciences, vol. 63, no. 3-4, pp. 140–144, 2008.
[35]
J. H. He, “Homotopy perturbation technique,” Computer Methods in Applied Mechanics and Engineering, vol. 178, pp. 257–262, 1999.
[36]
R. D. Skeel and M. Berzins, “A method for the spatial discretization of parabolic equations in one space variable,” SIAM Journal on Scientific & Statistical Computing, vol. 11, pp. 1–32, 1990.
[37]
“MATLAB 6. 1, The Math Works Inc., Natick, MA,” 2000, http://www.scilabenterprises.com.