This paper demonstrates an analytical approach on the bit error rate (BER) performance evaluation of a multi- carrier code division multiple access (MC-CDMA) communication link operating over terrestrial free space optical (FSO) channel considering effect of atmospheric turbulence The turbulence induced intensity fading is statistically modeled by Gamma-Gamma PDF (probability density function). Bit error rate performance improvement is proposed using photo detector spatial diversity with Equal Gain Combining (EGC) and Turbo Coding. Analysis is carried out with different bandwidth efficient phase shift keying (PSK) based sub-carrier intensity modulation (SIM) with direct detection. Numerical simulation results of proposed analytical model indicate that, sub-carrier intensity modulation scheme; number of receiver photo detectors, turbo coding parameter and link length should be optimally engineered for ensuring system reliability. It can be inferred from the simulation that, a reliable communication link ( 1 0 ? 1 0 ?BER) can be established over a link length of 4?Km in strong turbulence fading condition using an array of 4 PIN photo detectors, 8-ary PSK based sub-carrier intensity modulation scheme and appropriate turbo coding parameter with an average 10.2?dB CINR (Carrier to Interference and Noise Ratio) requirement per photo detector. Besides, more than 130?dB average CINR gain is also confirmed from BPSK modulated, un-coded SISO (single input-single output) system for maintaining targeted BER ( 1 0 ? 1 0 ) in presence of strong turbulence fading. 1. Introduction Free space optical communication (FSO) also known as wireless optical communication technique is a point to point to communication link in which two optical transceivers communicate via infrared laser light propagated through atmospheric channel. FSO recently has become a promising technology both for commercial as well as military application that can replete the gap between end user and backbone fiber optic infrastructure addressing the “last-mile” or “bottleneck” problem [1]. In metropolitan area network or local area network, end user is connected to the optical fiber network by means of existing DSL (digital subscriber line) having data speed in the range of Mbit/sec while FSO provides data rate in the rage of giga?bit/sec. Besides addressing “bottle-neck” problem, FSO is also promising for transmitting RF signal over free space by means of subcarrier multiplexing (SCM). The present technology of transmission of radio signal over optical fiber link is multiplexing of several carriers in
References
[1]
D. Kedar and S. Arnon, “Urban optical wireless communication networks: the main challenges and possible solutions,” IEEE Communications Magazine, vol. 42, no. 5, pp. S2–S7, 2004.
[2]
H. H. Refai, J. J. Sluss, and H. H. Refai, “The transmission of multiple RF signals in free-space optics using wavelength division multiplexing,” in Atmospheric Propagation II, vol. 5793 of Proceedings of the SPIE, pp. 136–143, Orlando, Fla, USA, March 2005.
[3]
K. Kazaura, K. Wakamori, M. Matsumoto, T. Higashino, K. Tsukamoto, and S. Komaki, “RoFSO: a universal platform for convergence of fiber and free-space optical communication networks,” IEEE Communications Magazine, vol. 48, no. 2, Article ID 5402676, pp. 130–137, 2010.
[4]
G. Katz, S. Arnon, P. Goldgeier, Y. Hauptman, and N. Atias, “Cellular over optical wireless networks,” IEE Proceedings, vol. 153, no. 4, pp. 195–198, 2006.
[5]
A. Bekkali, P. T. Dat, K. Kazaura, K. Wakamori, and M. Matsumoto, “Performance analysis of SCM-FSO links for transmission of CDMA signals under gamma-gamma turbulent channel,” in Proceedings of the IEEE Military Communications Conference (MILCOM '09), pp. 1–5, Boston, Mass, USA, October 2009.
[6]
B. Hamzeh and M. Kavehrad, “OCDMA-coded free-space optical links for wireless optical-mesh networks,” IEEE Transactions on Communications, vol. 52, no. 12, pp. 2165–2174, 2004.
[7]
T. A. Bhuiyan, M. D. Z. Hassan, S. M. S. Tanzil, S. Hayder, and S. P. Majumder, “Performance improvement of IM-DD free space optical CDMA (attenuated by strong atmospheric turbulence) with maximal ratio combining,” in Proceedings of the International Conference on Computational Intelligence and Communication Networks (CICN '10), pp. 513–518, Bhopal, Madhya Pradesh, India, 2010.
[8]
T. A. Bhuiyan, S. H. Choudhury, A. Al-Rasheed, and S. P. Majumder, “Effect of atmospheric turbulence on free space optical Multi-Carrier Code Division Multiple Access(MC-OCDMA),” in Proceedings of the 12th International Conference on Computer Modelling and Simulation (UKSim '10), pp. 553–557, London, UK, March 2010.
[9]
S. S. Muhammad, T. Plank, E. Leitgeb et al., “Challenges in establishing free space optical communications between flying vehicles,” in Proceedings of the 6th International Symposium Communication Systems, Networks and Digital Signal Processing (CSNDSP '08), pp. 82–86, Graz, Austria, July 2008.
[10]
H. Willebrand and B. S. Ghuman, Free Space Optics: Enabling Optical Connectivity in Today’s Network, SAMS, Indianapolis, Ind, USA, 2002.
[11]
J. C. Ricklin, S. M. Hammel, F. D. Eaton, and S. L. Lachinova, “Atmospheric channel effects on free-space laser communication,” Journal of Optical and Fiber Communications Research, vol. 3, no. 2, pp. 111–158, 2006.
[12]
B. Hamzeh and M. Kavehrad, Characterization of Cloud Obscured Free Space Optical Channels, U.S. Air Force Research Laboratory/Wright-Patterson, 2005.
[13]
X. Zhu and J. M. Kahn, “Free-space optical communication through atmospheric turbulence channels,” IEEE Transactions on Communications, vol. 50, no. 8, pp. 1293–1300, 2002.
[14]
T. A. Tsiftsis, H. G. Sandalidis, G. K. Karagiannidis, and M. Uysal, “Optical wireless links with spatial diversity over strong atmospheric turbulence channels,” IEEE Transactions on Wireless Communications, vol. 8, no. 2, pp. 951–957, 2009.
[15]
Z. Hajjarian, J. Fadlullah, and M. Kavehrad, “MIMO free space optical communications in turbid and turbulent atmosphere (invited paper),” Journal of Communications, vol. 4, no. 8, pp. 524–532, 2009.
[16]
F. Xu, A. Khalighi, P. Caussé, and S. Bourennane, “Channel coding and time-diversity for optical wireless links,” Optics Express, vol. 17, no. 2, pp. 872–887, 2009.
[17]
I. B. Djordjevic, B. Vasic, and M. A. Neifeld, “LDPC coded OFDM over the atmospheric turbulence channel,” Optics Express, vol. 15, no. 10, pp. 6336–6350, 2007.
[18]
W. O. Popoola, Z. Ghassemlooy, J. I. H. Allen, E. Leitgeb, and S. Gao, “Free-space optical communication employing subcarrier modulation and spatial diversity in atmospheric turbulence channel,” IET Optoelectronics, vol. 2, no. 1, pp. 16–23, 2008.
[19]
W. O. Popoola and Z. Ghassemlooy, “BPSK subcarrier intensity modulated free-space optical communications in atmospheric turbulence,” Journal of Lightwave Technology, vol. 27, no. 8, pp. 967–973, 2009.
[20]
W. O. Popoola and Z. Ghassemlooy, “Free-space optical communication in atmospheric turbulence using DPSK subcarrier modulation,” in Proceedings of the 9th International Symposium on Communication Theory and Application, pp. 156–169, Ambleside, Lake District, UK, July 2007.
[21]
M. A. Al-Habash, L. C. Andrews, and R. L. Phillips, “Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media,” Optical Engineering, vol. 40, no. 8, pp. 1554–1562, 2001.
[22]
S. M. Aghajanzadeh and M. Uysal, “Diversity–multiplexing trade-off in coherent free-space optical systems with multiple receivers,” Journal of Optical Communications and Networking, vol. 2, no. 12, pp. 1087–1094, 2010.
[23]
E. J. Lee and V. W. S. Chan, “Part 1: optical communication over the clear turbulent atmospheric channel using diversity,” IEEE Journal on Selected Areas in Communications, vol. 22, no. 9, pp. 1896–1906, 2004.
[24]
N. D. Chatzidiamantis, G. K. Karagiannidis, and D. S. Michalopoulos, “On the distribution of the sum of gamma-gamma variates and application in MIMO optical wireless systems,” in Proceedings of theIEEE Global Telecommunications Conference (GLOBECOM '09), pp. 1768–1773, Honolulu, Hawaii, USA, December 2009.
[25]
J. G. Prokis, Digital Communications, McGraw–Hill Book Company, New York, NY, USA, 4th edition, 2001.
[26]
M. Uysal, S. M. Navidpour, and J. Li, “Error rate performance of coded free-space optical links over strong turbulence channels,” IEEE Communications Letters, vol. 8, no. 10, pp. 635–637, 2004.
[27]
W. Gappmair and M. Flohberger, “Error performance of coded FSO links in turbulent atmosphere modeled by gamma-gamma distributions,” IEEE Transactions on Wireless Communications, vol. 8, no. 5, pp. 2209–2213, 2009.
[28]
W. E. Ryan, “Concatenated codes and iterative decoding,” in Willey Encyclopedia of Telecommunications, G. Proakis, Ed., John Wiley & Sons, New York, NY, USA, 1st edition, 2003.
[29]
N. Letzepis and A. Grant, “Bit error rate estimation for turbo decoding,” in Proceedings of the 4th Australian Communication Theory Workshop, pp. 108–112, 2003.
[30]
B. Vucetic and J. Yuan, Turbo Codes: Principles and Applications, Kluwer Academic Publishers, 2000.
[31]
T. M. Duman and A. Ghrayeb, Coding for MIMO Communication Systems, chapter 7, John Wiley & Sons, New York, NY, USA, 2007.
[32]
R. Garello, P. Pierleoni, and S. Benedetto, “Computing the free distance of turbo codes and serially concatenated codes with interleavers: algorithms and applications,” IEEE Journal on Selected Areas in Communications, vol. 19, no. 5, pp. 800–812, 2001.
[33]
K. Kazaura, T. Suzuki, T. Higashino, et al., “Experimental demonstration of a radio on free space optics system for ubiquitous wireless,” PIERS Online, vol. 5, no. 3, pp. 235–240, 2009.