Background. The presence of horse allergen in public places is not well-known, unlike for instance cat and dog allergens, which have been studied extensively. The aim was to investigate the presence of horse allergen in schools and to what extent the influence of number of children with regular horse contact have on indoor allergen levels. Methods. Petri dishes were used to collect airborne dust samples during one week in classrooms. In some cases, vacuumed dust samples were also collected. All samples were extracted, frozen and analysed for Equ cx content shortly after sampling, and some were re-analysed six years later with a more sensitive ELISA assay. Results. Horse allergen levels were significantly higher in classrooms, in which many children had horse contact, regardless of sampling method. Allergen levels in extracts from Petri dish samples, which had been kept frozen, dropped about 53% over a six-year period. Conclusion. Horse allergen was present in classrooms and levels were higher in classrooms where many children had regular horse contact in their leisure time. This suggests that transfer of allergens takes place via contaminated clothing. Measures should be taken to minimize possible transfer and deposition of allergens in pet-free environments, such as schools. 1. Introduction In Sweden, horseback riding has become increasingly popular and is today practiced by 6% of the population, of which the majority are living in densely built-up areas. A recent survey by the Swedish Board of Agriculture estimated the number of horses to be approximately 363.000 in 2010, an increase of 10–20% since 2004 [1]. Most of the horses (75%) are located in city areas and adjoining rural areas and as a consequence, more stables are integrated with built-up areas. In an attempt to protect susceptible subjects from undesirable exposure to horse allergen, a Swedish report from the Ministry of Health and Social Affairs, in 1989, recommended a distance of at least 500?m between public buildings and homes and places where horses are kept on a regular basis [2]. This recommendation has raised a debate around the issue of whether the level of exposure to horse allergen in the surroundings of stables is different compared to exposure occurring elsewhere, for instance in public environments such as schools. In order to investigate the airborne horse allergen dispersal, a few studies have been performed using different sampling techniques to assess horse allergen levels at various distances from stables and horse tracks [3–5]. The results show that horse allergen levels
References
[1]
Swedish Board of Agriculture, “H?star och anl?ggningar med h?st 2010 (Horses and horse establishments in 2010),” Statistics Sweden JO24SM1101, 2011.
[2]
Swedish Ai: SOU 1989:76 (Swedish statute) 1989.
[3]
L. Elfman, J. Brannstrom, and G. Smedje, “Detection of horse allergen around a stable,” International Archives of Allergy and Immunology, vol. 145, no. 4, pp. 269–276, 2008.
[4]
G. Emenius, P. H. Larsson, M. Wickman, and B. Harfast, “Dispersion of horse allergen in the ambient air, detected with sandwich ELISA,” Allergy, vol. 56, no. 8, pp. 771–774, 2001.
[5]
G. Emenius, A. S. Merritt, and B. Harfast, “Dispersion of horse allergen from stables and areas with horses into homes,” International Archives of Allergy and Immunology, vol. 150, no. 4, pp. 335–342, 2009.
[6]
C. Almqvist, P. H. Larsson, A. C. Egmar, M. Hedrén, P. Malmberg, and M. Wickman, “School as a risk environment for children allergic to cats and a site for transfer of cat allergen to homes,” Journal of Allergy and Clinical Immunology, vol. 103, no. 6, pp. 1012–1017, 1999.
[7]
A. C. Egmar, G. Emenius, C. Almqvist, and M. Wickman, “Cat and dog allergen in mattresses and textile-covered floors of homes which do or do not have pets, either in the past or currently,” Pediatric Allergy and Immunology, vol. 9, no. 1, pp. 31–35, 1998.
[8]
A. S. Karlsson, A. Benstr?m, M. Hedren, and K. Larsson, “Allergen avoidance does not alter airborne cat allergen levels in classrooms,” Allergy, vol. 59, no. 6, pp. 661–667, 2004.
[9]
A. Custovic, S. C. Taggart, and A. Woodcock, “House dust mite and cat allergen in different indoor environments,” Clinical and Experimental Allergy, vol. 24, no. 12, pp. 1164–1168, 1994.
[10]
K. Partti-Pellinen, O. Marttila, S. Makinen-Kiljunen, and T. Haahtela, “Occurrence of dog, cat, and mite allergens in public transport vehicles,” Allergy, vol. 55, no. 1, pp. 65–68, 2000.
[11]
G. Smedje and D. Norb?ck, “Irritants and allergens at school in relation to furnishings and cleaning,” Indoor Air, vol. 11, no. 2, pp. 127–133, 2001.
[12]
A. S. Karlsson, M. Hedrén, C. Almqvist, K. Larsson, and A. Renstr?m, “Evaluation of Petri dish sampling for assessment of cat allergen in airborne dust,” Allergy, vol. 57, no. 2, pp. 164–168, 2002.
[13]
J. L. Kim, L. Elfman, and D. Norback, “Respiratory symptoms, asthma and allergen levels in schools—comparison between Korea and Sweden,” Indoor Air, vol. 17, no. 2, pp. 122–129, 2007.
[14]
G. Smedje, D. Norb?ck, and C. Edling, “Asthma among secondary schoolchildren in relation to the school environment,” Clinical and Experimental Allergy, vol. 27, no. 11, pp. 1270–1278, 1997.
[15]
C. Almqvist, M. Wickman, L. Perfetti et al., “Worsening of asthma in children allergic to cats, after indirect exposure to cat at school,” American Journal of Respiratory and Critical Care Medicine, vol. 163, no. 3, pp. 694–698, 2001.
[16]
G. Smedje and D. Norb?ck, “Incidence of asthma diagnosis and self-reported allergy in relation to the school environment—a four-year follow-up study in schoolchildren,” International Journal of Tuberculosis and Lung Disease, vol. 5, no. 11, pp. 1059–1066, 2001.
[17]
J. L. Kim, L. Elfman, Y. Mi, M. Johansson, G. Smedje, and D. Norb?ck, “Current asthma and respiratory symptoms among pupils in relation to dietary factors and allergens in the school environment,” Indoor Air, vol. 15, no. 3, pp. 170–182, 2005.
[18]
Act TSWE: Ministry of Labour (SFS 1991:677) 1992.
[19]
Z. H. Zhao, L. Elfman, Z. H. Wang, Z. Zhang, and D. Norback, “A comparative study of asthma, pollen, cat and dog allergy among pupils and allergen levels in schools in Taiyuan city, China, and Uppsala, Sweden,” Indoor Air, vol. 16, no. 6, pp. 404–413, 2006.
[20]
E. R. Tovey, G. B. Marks, M. Matthews, W. F. Green, and A. Woolcock, “Changes in mite allergen Der p I in house dust following spraying with a tannic acid/acaricide solution,” Clinical and Experimental Allergy, vol. 22, no. 1, pp. 67–74, 1992.
[21]
A. S. Karlsson and A. Renstrom, “Human hair is a potential source of cat allergen contamination of ambient air,” Allergy, vol. 60, no. 7, pp. 961–964, 2005.
[22]
B. Fahlbusch, A. Koch, J. Douwes et al., “The effect of storage on allergen and microbial agent levels in frozen house dust,” Allergy, vol. 58, no. 2, pp. 150–153, 2003.
[23]
T. O'Meara and E. Tovey, “Monitoring personal allergen exposure,” Clinical Reviews in Allergy and Immunology, vol. 18, no. 3, pp. 341–395, 2000.
[24]
G. Liccardi, A. Salzillo, B. Dente et al., “Horse allergens: an underestimated risk for allergic sensitization in an urban atopic population without occupational exposure,” Respiratory Medicine, vol. 103, no. 3, pp. 414–420, 2009.
[25]
E. Novembre, F. Mori, S. Barni, N. Pucci, and M. E. Rossi, “Should the skin prick test to horse be included in the standard panel for the diagnosis of respiratory allergy?” Journal of Investigational Allergology and Clinical Immunology, vol. 19, no. 3, pp. 247–249, 2009.