Edible polymers have established substantial deliberation in modern eons because of their benefits comprising use as edible materials over synthetic polymers. This could contribute to the reduction of environmental contamination. Edible polymers can practically diminish the complexity and thus improve the recyclability of materials, compared to the more traditional non-environmentally friendly materials and may be able to substitute such synthetic polymers. A synthetic hydrogel polymer unlocked a new possibility for development of films, coatings, extrudable pellets, and synthetic nanopolymers, particularly designed for medical, agricultural, and industrial fields. Edible polymers offer many advantages for delivering drugs and tissue engineering. Edible polymer technology helps food industries to make their products more attractive and safe to use. Novel edible materials have been derived from many natural sources that have conventionally been regarded as discarded materials. The objective of this review is to provide a comprehensive introduction to edible polymers by providing descriptions in terms of their origin, properties, and potential uses. 1. Introduction The increasing mandate for high quality, ready-to-eat food products with a long shelf life contributes to the expansion of new processing technologies which ensure that the product’s natural properties and appearance were not dramatically transformed. Food wrapping contributes to a lot of wastes in our homes and it is something that most of us just accept. Edible polymers were the polymeric material which can be easily consumed by human beings or lower animals in whole or part via the oral cavity and given harmless effect to the health. Edible polymers may be applied directly on the surface as additional protection to preserve product quality and stability. The requirements imposed on edible polymers were determined by the specific properties of the product and changes in these properties during production and storage [1]. There were several reasons for investigating edible polymers. One of them was the introduction of new food product categories, such as safe, convenient, and high quality products. They protect food against the loss of nutrients. In practice, edible coatings which control the rate of transport of the product’s molecular components from the inside to the outside of the packaging may slow down adverse reactions which were responsible for undesirable changes in food products [1]. The efficiency of edible polymer was determined by their mass transport properties [2]. Technologist
References
[1]
S. Kokoszka and A. Lenart, “Edible coatings—formation, characteristics and use—a review,” Polish Journal of Food and Nutrition Sciences, vol. 57, no. 4, pp. 399–404, 2007.
[2]
G. G. Buonocore, M. A. del Nobile, A. Panizza, S. Bove, G. Battaglia, and L. Nicolais, “Modeling the lysozyme release kinetics from antimicrobial films intended for food packaging applications,” Journal of Food Science, vol. 68, no. 4, pp. 1365–1370, 2003.
[3]
R. C. Eberhart, S. Su, K. T. Nguyen et al., “Bioresorbable polymeric stents: current status and future promise,” Journal of Biomaterials Science, Polymer Edition, vol. 14, no. 4, pp. 299–312, 2003.
[4]
D. Bikiaris, “Nanomedicine in cancer treatment: drug targeting and the safety of the used materials for drug nanoencapsulation,” Biochemical Pharmacology, vol. 1, article E122, 2012.
[5]
A. Dhanapal, P. Sasikala, L. Rajamani, V. Kavitha, G. Yazhini, and M. S. Banu, “Edible films from polysaccharides,” Food Science and Quality Management, vol. 3, pp. 9–18, 2012.
[6]
T. Bourtoom, “Edible films and coatings: characteristics and properties,” International Food Research Journal, vol. 15, no. 3, pp. 237–248, 2008.
[7]
World Economic Situation and Prospects 2012, Sales no. E.12.Ii.C.2, United Nations Publication, 2012.
[8]
E. Salleh, I. I. Muhamad, and N. Khairuddin, “Structural characterization and physical properties of antimicrobial (AM) starch-based films,” World Academy of Science, Engineering and Technology, vol. 3, pp. 7–25, 2009.
[9]
Z. Akbari, T. Ghomashchi, and S. Moghadam, “Improvement in food packaging industry with biobased nanocomposites,” International Journal of Food Engineering, vol. 3, no. 4, article 3, 2007.
[10]
S. Saremnezhad, M. H. Azizi, M. Barzegar, S. Abbasi, and E. Ahmadi, “Properties of a new edible film made of faba bean protein isolate,” Journal of Agricultural Science and Technology, vol. 13, no. 2, pp. 181–192, 2011.
[11]
O. Skurtys, C. Acevedo, F. Pedreschi, J. Enronoe, F. Osorio, and J. M. Aguilera, Food Hydrocolloid Edible Films and Coatings, Food Science and Technology, Nova Publisher, 2010.
[12]
M. E. Embuscado and K. C. Huber, Edible Films and Coatings for Food Applications, Springer, London, UK, 2009.
[13]
S. A. Jang, G. O. Lim, and K. B. Song, “Preparation and mechanical properties of edible rapeseed protein films,” Journal of Food Science, vol. 76, no. 2, pp. C218–C223, 2011.
[14]
P. Mokrejs, F. Langmaier, D. Janacova, M. Mladek, K. Kolomaznik, and V. Vasek, “Thermal study and solubility tests of films based on amaranth flour starch-protein hydrolysate,” Journal of Thermal Analysis and Calorimetry, vol. 98, no. 1, pp. 299–307, 2009.
[15]
P. Bergo, P. J. A. Sobral, and J. M. Prison, “Effect of glycerol on physical properties of cassava starch films,” Journal of Food Processing and Preservation, vol. 34, no. 2, pp. 401–410, 2010.
[16]
A. M. Stephen, G. O. Phillips, and P. A. Williams, Food Polysaccharides and Their Applications, CRC Press, Taylor & Francis Group, 2nd edition, 2006.
[17]
C. A. Romero-Bastida, L. A. Bello-Pérez, M. A. García, M. N. Martino, J. Solorza-Feria, and N. E. Zaritzky, “Physicochemical and microstructural characterization of films prepared by thermal and cold gelatinization from non-conventional sources of starches,” Carbohydrate Polymers, vol. 60, no. 2, pp. 235–244, 2005.
[18]
K. Krogars, J. Hein?m?ki, M. Karjalainen, J. Rantanen, P. Luukkonen, and J. Yliruusi, “Development and characterization of aqueous amylose-rich maize starch dispersion for film formation,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 56, no. 2, pp. 215–221, 2003.
[19]
C. Ribeiro, A. A. Vicente, J. A. Teixeira, and C. Miranda, “Optimization of edible coating composition to retard strawberry fruit senescence,” Postharvest Biology and Technology, vol. 44, no. 1, pp. 63–70, 2007.
[20]
E. Argüello-García, J. Solorza-Feria, J. R. Rendón-Villalobos, F. Rodríguez-González, A. Jiménez-Pérez, and E. Flores-Huicochea, “Properties of edible films based on oxidized starch and zein,” International Journal of Polymer Science, vol. 2014, Article ID 292404, 9 pages, 2014.
[21]
R. Utami, Kawiji, E. Nurhartadi, A. Y. T. Putra, and I. Setiawan, “The effect of cassava starch-based edible coating enriched with Kaempferia rotunda and Curcuma xanthorrhiza essential oil on refrigerated patin fillets quality,” International Food Research Journal, vol. 21, no. 1, pp. 413–419, 2014.
[22]
J. Rhim, “Physical and mechanical properties of water resistant sodium alginate films,” Lebensmittel-Wissenschaft und Technologie, vol. 37, no. 3, pp. 323–330, 2004.
[23]
S. T. Prajapati, A. P. Mehta, I. P. Modhia, and C. N. Patel, “Formulation and optimisation of raft-forming chewable tablets containing H2 antagonist,” International Journal of Pharmaceutical Investigation, vol. 2, pp. 176–182, 2012.
[24]
B. Arica, S. ?ali?, H. S. Ka?, M. F. Sargon, and A. A. Hincal, “5-fluorouracil encapsulated alginate beads for the treatment of breast cancer,” International Journal of Pharmaceutics, vol. 242, no. 1-2, pp. 267–269, 2002.
[25]
R. Malviya, “Swelling and erosion based formulations for the treatment of chronic seizures using (3)2 factorial design,” Middle-East Journal of Scientific Research, vol. 11, no. 1, pp. 77–84, 2012.
[26]
W. Borchard, A. Kenning, A. Kapp, and C. Mayer, “Phase diagram of the system sodium alginate/water: a model for biofilms,” International Journal of Biological Macromolecules, vol. 35, no. 5, pp. 247–256, 2005.
[27]
T. Karbowiak, F. Debeaufort, D. Champion, and A. Voilley, “Wetting properties at the surface of iota-carrageenan-based edible films,” Journal of Colloid and Interface Science, vol. 294, no. 2, pp. 400–410, 2006.
[28]
V. D. Prajapati, P. M. Maheriya, G. K. Jani, and H. K. Solanki, “Carrageenan: a natural seaweed polysaccharide and its applications,” Carbohydrate Polymers, vol. 105, pp. 97–112, 2014.
[29]
T. Karbowiak, H. Hervet, L. Léger, D. Champion, and F. Debeaufort, “Effect of plasticizers (water and glycerol) on the diffusion of a small molecule in iota-carrageenan biopolymer films for edible coating application,” Biomacromolecules, vol. 7, no. 6, pp. 2011–2019, 2006.
[30]
G. O. Phillips and P. A. Williams, Handbook of Hydrocolloids, CRC Press, Cambridge, UK, 2009.
[31]
Y. S. Pathare, V. S. Hastak, and A. N. Bajaj, “Polymers used for fast disintegrating oral films: a review,” International Journal of Pharmaceutical Sciences Review, vol. 21, no. 1, pp. 169–178, 2013.
[32]
S. Galus, H. Mathieu, A. Lenart, and F. Debeaufort, “Effect of modified starch or maltodextrin incorporation on the barrier and mechanical properties, moisture sensitivity and appearance of soy protein isolate-based edible films,” Innovative Food Science and Emerging Technologies, vol. 16, pp. 148–154, 2012.
[33]
H. Patel, V. Shah, and U. Upadhyay, “New pharmaceutical excipients in solid dosage forms—a review,” International Journal of Pharmacy and Life Sciences, vol. 2, no. 8, pp. 1006–1019, 2011.
[34]
M. A. García, C. Ferrero, N. Bértola, M. Martino, and N. Zaritzky, “Edible coatings from cellulose derivatives to reduce oil uptake in fried products,” Innovative Food Science and Emerging Technologies, vol. 3, no. 4, pp. 391–397, 2002.
[35]
V. Comaa, I. Sebtia, P. Pardonb, F. H. Pichavantb, and A. Deschampsa, “Film properties from crosslinking of cellulosic derivatives with a polyfunctional carboxylic acid,” Carbohydrate Polymers, vol. 51, pp. 265–271, 2003.
[36]
P. Srivastava, “Sources of pectin, extraction and its applications in pharmaceutical industry—an overview,” Indian Journal of Natural Products and Resources, vol. 2, no. 1, pp. 10–18, 2011.
[37]
N. Natrajan and B. W. Sheldon, “Efficacy of nisin-coated polymer films to inactivate Salmonella typhimurium on fresh broiler skin,” Journal of Food Protection, vol. 63, no. 9, pp. 1189–1196, 2000.
[38]
Y. Freile-Pelegrin, D. Robledo, M. J. Chan-Bacab, and B. O. Ortega-Morales, “Antileishmanial properties of tropical marine algae extracts,” Fitoterapia, vol. 79, no. 5, pp. 374–377, 2008.
[39]
T. D. Phan, F. Debeaufort, D. Luu, and A. Voilley, “Functional properties of edible agar-based and starch-based films for food quality preservation,” Journal of Agricultural and Food Chemistry, vol. 53, no. 4, pp. 973–981, 2005.
[40]
M. Mucha, K. Wańkowicz, and J. Balcerzak, “Analysis of water adsorption on Chitosan and its blends with hydroxypropylcellulose,” E-Polymers, vol. 16, pp. 1–10, 2007.
[41]
B. Wang, J. Zhang, G. Cheng, and S. Dong, “Amperometric enzyme electrode for the determination of hydrogen peroxide based on sol-gel/hydrogel composite film,” Analytica Chimica Acta, vol. 407, no. 1-2, pp. 111–118, 2000.
[42]
S. J. Kim, S. R. Shin, S. M. Lee, I. Y. Kim, and S. I. Kim, “Electromechanical properties of hydrogels based on chitosan and poly(hydroxyethyl methacrylate) in NaCl solution,” Smart Materials and Structures, vol. 13, no. 5, pp. 1036–1039, 2004.
[43]
C. G. Lee, “Chitin, chitinases and chitinase-like proteins in allergic inflammation and tissue remodeling,” Yonsei Medical Journal, vol. 50, no. 1, pp. 22–30, 2009.
[44]
J. Vartiainen, R. Motion, H. Kulonen, M. R?tt?, E. Skytt?, and R. Ahvenainen, “Chitosan-coated paper: effects of nisin and different acids on the antimicrobial activity,” Journal of Applied Polymer Science, vol. 94, no. 3, pp. 986–993, 2004.
[45]
S. Y. Park, K. S. Marsh, and J. W. Rhim, “Characteristics of different molecular weight chitosan films affected by the type of organic solvents,” Journal of Food Science, vol. 67, no. 1, pp. 194–197, 2002.
[46]
C. Ribeiro, A. A. Vicente, J. A. Teixeira, and C. Miranda, “Optimization of edible coating composition to retard strawberry fruit senescence,” Postharvest Biology and Technology, vol. 44, no. 1, pp. 63–70, 2007.
[47]
G. Crini, “Non-conventional low-cost adsorbents for dye removal: a review,” Bioresource Technology, vol. 97, no. 9, pp. 1061–1085, 2006.
[48]
W. Won, X. Feng, and D. Lawless, “Pervaporation with chitosan membranes: separation of dimethyl carbonate/methanol/water mixtures,” Journal of Membrane Science, vol. 209, no. 2, pp. 493–508, 2002.
[49]
J. Nunthanid, M. Laungtana-Anan, P. Sriamornsak et al., “Characterization of chitosan acetate as a binder for sustained release tablets,” Journal of Controlled Release, vol. 99, no. 1, pp. 15–26, 2004.
[50]
Y. Tsai, S. Chen, and H. Liaw, “Immobilization of lactate dehydrogenase within multiwalled carbon nanotube-chitosan nanocomposite for application to lactate biosensors,” Sensors and Actuators B: Chemical, vol. 125, no. 2, pp. 474–481, 2007.
[51]
X. H. Xu, G. L. Ren, J. Cheng, Q. Liu, D. G. Li, and Q. Chen, “Self-assembly of polyaniline-grafted chitosan/glucose oxidase nanolayered films for electrochemical biosensor applications,” Journal of Materials Science, vol. 41, no. 15, pp. 4974–4977, 2006.
[52]
R. Díaz-Sobac, H. García, C. I. Beristain, and E. J. Vernon-Carter, “Morphology and water vapor permeability of emulsion films based on mesquite gum,” Journal of Food Processing and Preservation, vol. 26, no. 2, pp. 129–141, 2002.
[53]
R. Dimitriou, G. I. Mataliotakis, G. M. Calori, and P. V. Giannoudis, “The role of barrier membranes for guided bone regeneration and restoration of large bone defects: current experimental and clinical evidence,” BMC Medicine, vol. 10, article 81, 2012.
[54]
R. Khan and M. H. Khan, “Use of collagen as a biomaterial: an update,” Journal of Indian Society of Periodontology, vol. 17, no. 4, pp. 539–542, 2013.
[55]
K. Dybka and P. Walczak, “Collagen hydrolysates as a new diet supplement,” Food Chemistry and Biotechnology, vol. 73, pp. 83–92, 2009.
[56]
T. Wittaya, “Protein-based edible films: characteristics and improvement of properties,” in Structure and Function of Food Engineering, chapter 3, InTech, 2012.
[57]
M. I. Khan, M. N. Adrees, M. R. Tariq, and M. Sohaib, “Application of edible coating for improving meat quality: a review,” Pakistan Journal of Food Sciences, vol. 23, no. 2, pp. 71–79, 2013.
[58]
J. Sris, A. Seethadevi, K. Suria Prabha, P. Muthuprasanna, and P. Pavitra, “Microencapsulation: a review,” International Journal of Pharma and Bio Sciences, vol. 3, no. 1, pp. 509–521, 2012.
[59]
T. Wittaya, “Protein-based edible films: characteristics and improvement of properties,” in Structure and Function of Food Engineering, chapter 3, InTech.
[60]
R. Shukla and M. Cheryan, “Zein: the industrial protein from corn,” Industrial Crops and Products, vol. 13, no. 3, pp. 171–192, 2001.
[61]
J. Bai, V. Alleyne, R. D. Hagenmaier, J. P. Mattheis, and E. A. Baldwin, “Formulation of zein coatings for apples (Malus domestica Borkh),” Postharvest Biology and Technology, vol. 28, no. 2, pp. 259–268, 2003.
[62]
H. Dhanya and S. Divia, “Development of Zein-Pectin nanoparticle as drug carrier,” International Journal of Drug Delivery, vol. 4, pp. 147–152, 2012.
[63]
M. M. Moore, T. J. Schober, P. Dockery, and E. K. Arendt, “Textural comparisons of gluten-free and wheat-based doughs, batters, and breads,” Cereal Chemistry, vol. 81, no. 5, pp. 567–575, 2004.
[64]
S. Y. Cho and C. Rhee, “Mechanical properties and water vapor permeability of edible films made from fractionated soy proteins with ultrafiltration,” Lebensmittel-Wissenschaft und Technologie, vol. 37, no. 8, pp. 833–839, 2004.
[65]
J. Zhang, P. Mungara, and J. Jane, “Mechanical and thermal properties of extruded soy protein sheets,” Polymer, vol. 42, no. 6, pp. 2569–2578, 2001.
[66]
Bisson, “Preparation of a Casein-Based Puffed Product,” United States Patent. Patent Number: 4,744,99, May 1988.
[67]
S. Keereekasetsuk and T. Bourtoom, “Influence of plasticizers on the properties of edible film from Mung bean protein,” in Proceedings of the 14th World Congress of Food Science and Technology, Shanghai, China, October 2008.
[68]
T. Bourtoom, “Factors affecting the properties of edible film prepared from mung bean proteins,” International Food Research Journal, vol. 15, no. 2, pp. 167–180, 2008.
[69]
F. F. Shih, K. W. Daigle, and E. T. Champagne, “Effect of rice wax on water vapour permeability and sorption properties of edible pullulan films,” Food Chemistry, vol. 127, no. 1, pp. 118–121, 2011.
[70]
S. Berg, M. Bretz, E. M. Hubbermann, and K. Schwarz, “Influence of different pectins on powder characteristics of microencapsulated anthocyanins and their impact on drug retention of shellac coated granulate,” Journal of Food Engineering, vol. 108, no. 1, pp. 158–165, 2012.
[71]
S. L. Kamper and O. N. Fennema, “Water vapor permeability of an edible, fatty acid, bilayer film,” Journal of Food Science, vol. 49, pp. 1482–1485, 1984.
[72]
S. Y. Ryu, J. W. Rhim, H. J. Roh, and S. S. Kim, “Preparation and physical properties of zein-coated high-amylose corn starch film,” LWT—Food Science and Technology, vol. 35, no. 8, pp. 680–686, 2002.
[73]
N. Cao, Y. Fua, and Y. He, “Preparation and physical properties of soy protein isolate and gelatin composite films,” Lwt—Food Science and Technology, vol. 35, pp. 680–686, 2002.
[74]
J. W. Rhim, A. Gennadios, A. Handa, C. L. Weller, and M. A. Hanna, “Solubility, tensile, and color properties of modified soy protein isolate films,” Journal of Agricultural and Food Chemistry, vol. 48, no. 10, pp. 4937–4941, 2000.
[75]
A. M. Carmona-Ribeiro and L. D. D. M. Carrasco, “Cationic antimicrobial polymers and their assemblies,” International Journal of Molecular Sciences, vol. 14, no. 5, pp. 9906–9946, 2013.
[76]
S. Yamano, J. Dai, S. Hanatani et al., “Long-term efficient gene delivery using polyethylenimine with modified Tat peptide,” Biomaterials, vol. 35, no. 5, pp. 1705–1715, 2014.
[77]
H. U. Petereit, C. Meier, and E. Roth, United States Patent. Patent no. : Us 7,160,558 B2, January 2007.
[78]
H. Schlaad, L. You, R. Sigel et al., “Glycopolymer vesicles with an asymmetric membrane,” Chemical Communications, no. 12, pp. 1478–1480, 2009.
[79]
D. S. Cha and M. S. Chinnan, “Biopolymer-based antimicrobial packaging: a review,” Critical Reviews in Food Science and Nutrition, vol. 44, no. 4, pp. 223–237, 2004.
[80]
L. Lagarón Cabedo, D. Cava, J. Feijoo, R. Gavara, and E. Gimenez, “Improving packaged food quality and safety, part 2: nanocomposites,” Food Additives and Contaminants, vol. 22, no. 10, pp. 994–998, 2005.
[81]
E. W. Gacitua, A. A. Ballerini, and J. Zhang, “Polymer nanocomposites: synthetic and natural fillers a review,” Maderas: Ciencia y Tecnología, vol. 7, no. 3, pp. 159–178, 2005.
[82]
G. Y. Cortez-Mazatán, L. A. Valdez-Aguilar, R. H. Lira-Saldivar, and R. D. Peralta-Rodríguez, “Polyvinyl acetate as an edible coating for fruits. Effect on selected physiological and quality characteristics of tomato,” Revista Chapingo Serie Horticultura, vol. 17, no. 1, pp. 15–22, 2011.
[83]
A. Lodha, A. Patel, J. Chaudhuri, P. Jadia, T. Joshi, and J. Dalal, “Formulation and evaluation of transparent ibuprofen soft gelatin capsule,” Journal of Pharmacy and Bioallied Sciences, vol. 4, pp. 95–97, 2012.
[84]
M. C. Gómez-Guillén, M. Pérez-Mateos, J. Gómez-Estaca, E. López-Caballero, B. Giménez, and P. Montero, “Fish gelatin: a renewable material for developing active biodegradable films,” Trends in Food Science and Technology, vol. 20, no. 1, pp. 3–16, 2009.
[85]
K. Grohmann and R. D. Hagenmaier, “Edible Food Coatings Containing Polyvinyl Acetate,” United States Patent. Patent Number: 6,162,475, December 2000.
[86]
P. R. Gunjal, T. S. Kalmegh, M. Gadhave, and S. A. Jadhav, “Review on medicated chewing gum as a novel drug delivery system,” International Journal of Universal Pharmacy and Life Sciences, vol. 2, no. 4, pp. 19–36, 2012.
[87]
T. M. Pearce and T. V. Pearce, “Snacks of Orally Soluble Edible Films,” United States Patent. Pub. no. : Us 2003/0224090 A1, December 2003.
[88]
T. Pearce, “Delivery Units of Thick Orally Soluble Polymer,” United States Patent Application Publication. Pub. no. : Us 2004/0247746 A1, December 2004.
[89]
E. John, Vanity, Vitality, and Virility, pp. 189–197, Oxford University Press, New York, NY, USA, 2004.
[90]
T. H. Shepherd and F. E. Gould, “Chewing Gum Composition Containing Flavored Homopolymers,” United States Patent Office. Patent no. 3,761,286, September 1973.
[91]
P. Gebreselassie, N. Boghani, and G. Visscher, “Edible Compositions Containing Swellable Polymers,” United States Patent Application Publication. Pub. no. : Us 2006/0153949 A1, July 2006.
[92]
D. R. Lu, C. M. Xiao, and S. J. Xu, “Starch-based completely biodegradable polymer materials,” Express Polymer Letters, vol. 3, no. 6, pp. 366–375, 2009.
[93]
V. G. Kadajji and G. V. Betageri, “Water soluble polymers for pharmaceutical applications,” Polymers, vol. 3, pp. 1972–2009, 2011.
[94]
Y. Luo and Q. Wang, “Zein-based micro- and nano-particles for drug and nutrient delivery: a review,” Journal of Applied Polymer Science, 2014.
[95]
J. Necas, L. Bartosikova, P. Brauner, and J. Kolar, “Hyaluronic acid (hyaluronan): a review,” Veterinarni Medicina, vol. 53, no. 8, pp. 397–411, 2008.
[96]
V. T. Chamle, P. S. Misal, S. G. Shep, and R. A. Hajare, “A potential natural gum as a polymer used in NDDS: recent investigations,” International Journal of Current Trends in Pharmaceutical Research, vol. 1, no. 1, pp. 67–73, 2013.
[97]
I. J. Ogaji, E. I. Nep, and J. D. Audu-Peter, “Advances in natural polymers as pharmaceutical excipients,” Pharmaceutica Analytica Acta, vol. 3, no. 1, article 146, 2012.
[98]
G. Vilar, J. Tulla-Puche, and F. Albericio, “Polymers and drug delivery systems,” Current Drug Delivery, vol. 4, pp. 367–394, 2012.
[99]
Y. J. Kim, S. Chun, J. Whitacre, and C. J. Bettinger, “Self-deployable current sources fabricated from edible materials,” Journal of Materials Chemistry B, vol. 1, no. 31, pp. 3781–3788, 2013.
[100]
B. Mattix, T. R. Olsen, T. Moore et al., “Accelerated iron oxide nanoparticle degradation mediated by polyester encapsulation within cellular spheroids,” Advanced Functional Materials, vol. 24, no. 6, pp. 800–807, 2014.
[101]
P. Jochenweiss and D. Julianmcclements, “Functional materials in food nanotechnology,” Journal of Food Science, vol. 71, no. 9, pp. 10–116, 2006.