全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Gestational Trophoblastic Disease: A Multimodality Imaging Approach with Impact on Diagnosis and Management

DOI: 10.1155/2014/842751

Full-Text   Cite this paper   Add to My Lib

Abstract:

Gestational trophoblastic disease is a condition of uncertain etiology, comprised of hydatiform mole (complete and partial), invasive mole, choriocarcinoma, and placental site trophoblastic tumor. It arises from abnormal proliferation of trophoblastic tissue. Early diagnosis of gestational trophoblastic disease and its potential complications is important for timely and successful management of the condition with preservation of fertility. Initial diagnosis is based on a multimodality approach: encompassing clinical features, serial quantitative β-hCG titers, and pelvic ultrasonography. Pelvic magnetic resonance imaging (MRI) is sometimes used as a problem-solving tool to assess the depth of myometrial invasion and extrauterine disease spread in equivocal and complicated cases. Chest radiography, body computed tomography (CT), and brain MRI have been recommended as investigative tools for overall disease staging. Angiography has a role in management of disease complications and metastases. Efficacy of PET (positron emission tomography) and PET/CT in the evaluation of recurrent or metastatic disease has not been adequately investigated yet. This paper discusses the imaging features of gestational trophoblastic disease on various imaging modalities and the role of different imaging techniques in the diagnosis and management of this entity. 1. Introduction Gestational trophoblastic disease (GTD) refers to an abnormal trophoblastic proliferation composed of a broad spectrum of lesions ranging from benign, albeit premalignant hydatiform mole (complete and partial), through to the aggressive invasive mole, choriocarcinoma, and placental site trophoblastic tumor (PSTT). Gestational trophoblastic neoplasia (GTN) refers to the aggressive subset that has a capability for independent growth and metastases and requires chemotherapy. It includes invasive mole, choriocarcinoma, and PSTT. GTN may arise following evacuation of a molar pregnancy as well as after a normal term or preterm pregnancy, abortion, or ectopic pregnancy. Hence, it is also referred to as persistent trophoblastic neoplasia (PTN). These lesions vary considerably in clinicopathologic behavior and propensity for local invasion and metastases. Although GTD may occur as a pregnancy complication in women of any age, it is more common at teenage or advanced maternal age (40–50 years) [1, 2]. Early detection of GTN is important as it has an excellent prognosis following treatment due to exquisite chemosensitivity of most of these lesions [1, 2]. In this paper, we describe the role of various imaging

References

[1]  B. J. Wagner, P. J. Woodward, and G. E. Dickey, “From the archives of the AFIP. Gestational trophoblastic disease: radiologic-pathologic correlation,” Radiographics, vol. 16, no. 1, pp. 131–148, 1996.
[2]  S. D. Allen, A. K. Lim, M. J. Seckl, D. M. Blunt, and A. W. Mitchell, “Radiology of gestational trophoblastic neoplasia,” Clinical Radiology, vol. 61, no. 4, pp. 301–313, 2006.
[3]  B. W. Hancock, “Staging and classification of gestational trophoblastic disease,” Bailliere's Best Practice and Research in Clinical Obstetrics and Gynaecology, vol. 17, no. 6, pp. 869–883, 2003.
[4]  S. J. Kim, “Placental site trophoblastic tumour,” Bailliere's Best Practice and Research in Clinical Obstetrics and Gynaecology, vol. 17, no. 6, pp. 969–984, 2003.
[5]  K. M. Elsayes, A. T. Trout, A. M. Friedkin et al., “Imaging of the placenta: a multimodality pictorial review,” Radiographics, vol. 29, no. 5, pp. 1371–1391, 2009.
[6]  K. A. Jain, “Gestational trophoblastic disease: pictorial review,” Ultrasound Quarterly, vol. 21, no. 4, pp. 245–253, 2005.
[7]  C. M. Feltmate, D. R. Genest, L. Wise, M. R. Bernstein, D. P. Goldstein, and R. S. Berkowitz, “Placental site trophoblastic tumor: a 17-year experience at the New England Trophoblastic Disease Center,” Gynecologic Oncology, vol. 82, no. 3, pp. 415–419, 2001.
[8]  C. Betel, M. Atri, A. Arenson, M. Khalifa, R. Osborne, and G. Tomlinson, “Sonographic diagnosis of gestational trophoblastic disease and comparison with retained products of conception,” Journal of Ultrasound in Medicine, vol. 25, no. 8, pp. 985–993, 2006.
[9]  T. Y. Ng and L. C. Wong, “Diagnosis and management of gestational trophoblastic neoplasia,” Bailliere's Best Practice and Research in Clinical Obstetrics and Gynaecology, vol. 17, no. 6, pp. 893–903, 2003.
[10]  H. Ngan, H. Bender, J. L. Benedet et al., “Gestational trophoblastic neoplasia, FIGO 2000 staging and classification,” International Journal of Gynecology and Obstetrics, vol. 83, supplement 1, pp. 175–177, 2003.
[11]  A. K. P. Shanbhogue, N. Lalwani, and C. O. Menias, “Gestational trophoblastic disease,” Radiologic Clinics of North America, vol. 51, no. 6, pp. 1023–1034, 2013.
[12]  K. K. Kani, J. H. Lee, M. Dighe, M. Moshiri, O. Kolokythas, and T. Dubinsky, “Gestatational trophoblastic disease: multimodality imaging assessment with special emphasis on spectrum of abnormalities and value of imaging in staging and management of disease,” Current Problems in Diagnostic Radiology, vol. 41, no. 1, pp. 1–10, 2012.
[13]  S. Chopra, A. S. Lev-Toaff, F. Ors, and D. Bergin, “Adenomyosis: common and uncommon manifestations on sonography and magnetic resonance imaging,” Journal of Ultrasound in Medicine, vol. 25, no. 5, pp. 617–627, 2006.
[14]  Q. Zhou, X. Y. Lei, Q. Xie, and J. D. Cardoza, “Sonographic and Doppler imaging in the diagnosis and treatment of gestational trophoblastic disease: a 12-year experience,” Journal of Ultrasound in Medicine, vol. 24, no. 1, pp. 15–24, 2005.
[15]  R. Agarwal, S. Strickland, I. A. McNeish et al., “Doppler ultrasonography of the uterine artery and the response to chemotherapy in patients with gestational trophoblastic tumors,” Clinical Cancer Research, vol. 8, no. 5, pp. 1142–1147, 2002.
[16]  M. G. Long, J. E. Boultbee, R. Langley, E. S. Newlands, R. H. J. Begent, and K. D. Bagshawe, “Doppler assessment of the uterine circulation and the clinical behaviour of gestational trophoblastic tumours requiring chemotherapy,” British Journal of Cancer, vol. 66, no. 5, pp. 883–887, 1992.
[17]  R. Agarwal, V. Harding, D. Short et al., “Uterine artery pulsatility index: a predictor of methotrexate resistance in gestational trophoblastic neoplasia,” British Journal of Cancer, vol. 106, no. 6, pp. 1089–1094, 2012.
[18]  A. Sita-Lumsden, H. Medani, R. Fisher et al., “Uterine artery pulsatility index improves prediction of methotrexate resistance in women with gestational trophoblastic neoplasia with FIGO score 5-6,” BJOG, vol. 120, no. 8, pp. 1012–1015, 2013.
[19]  P. Polat, S. Suma, M. Kantarcy, F. Alper, and A. Levent, “Color Doppler US in the evaluation of uterine vascular abnormalities,” Radiographics, vol. 22, no. 1, pp. 47–53, 2002.
[20]  S. Umeoka, T. Koyama, K. Togashi, H. Kobayashi, and K. Akuta, “Vascular dilatation in the pelvis: Identification with CT and MR imaging,” Radiographics, vol. 24, no. 1, pp. 193–208, 2004.
[21]  J. W. Barton, S. M. McCarthy, E. I. Kohorn, L. M. Scoutt, and R. C. Lange, “Pelvic MR imaging findings in gestational trophoblastic disease, incomplete abortion, and ectopic pregnancy: are they specific?” Radiology, vol. 186, no. 1, pp. 163–168, 1993.
[22]  E. I. Kohorn, S. M. McCarthy, and J. W. Barton, “Is magnetic resonance imaging a useful aid in confirming the diagnosis of nonmetastatic gestational trophoblastic neoplasia?” International Journal of Gynecological Cancer, vol. 6, no. 2, pp. 128–134, 1996.
[23]  M. Nagayama, Y. Watanabe, A. Okumura, Y. Amoh, S. Nakashita, and Y. Dodo, “Fast MR imaging in obstetrics,” Radiographics, vol. 22, no. 3, pp. 563–580, 2002.
[24]  H. Hricak, B. E. Demas, C. A. Braga, M. R. Fisher, and M. L. Winkler, “Gestational trophoblastic neoplasm of the uterus: MR assessment,” Radiology, vol. 161, no. 1, pp. 11–16, 1986.
[25]  A. K. P. Lim, D. Patel, N. Patel et al., “Pelvic imaging in gestational trophoblastic neoplasia,” Journal of Reproductive Medicine for the Obstetrician and Gynecologist, vol. 53, no. 8, pp. 575–578, 2008.
[26]  Y. Yamashita, M. Torashima, M. Takahashi et al., “Contrast-enhanced dynamic MR imaging of postmolar gestational trophoblastic disease,” Acta Radiologica, vol. 36, no. 2, pp. 188–192, 1995.
[27]  A. K. P. Lim, R. Agarwal, M. J. Seckl, E. S. Newlands, N. K. Barrett, and A. W. M. Mitchell, “Embolization of bleeding residual uterine vascular malformations in patients with treated gestational trophoblastic tumors,” Radiology, vol. 222, no. 3, pp. 640–644, 2002.
[28]  P. Mapelli, G. Mangili, M. Picchio, et al., “Role of 18F-FDG PET in the management of gestational trophoblastic neoplasia,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 40, no. 4, pp. 505–513, 2013.
[29]  R. Cortés-Charry, L. M. Figueira, L. Nieves, and L. Colmenter, “Metastasis detection with 18 FDG-positron emission tomography/computed tomography in gestational trophoblastic neoplasia: a report of 2 cases,” Journal of Reproductive Medicine, vol. 51, no. 11, pp. 897–901, 2006.
[30]  T. C. Chang, T. C. Yen, Y. T. Li, et al., “The role of 18F-fluorodeoxyglucose positron emission tomography in gestational trophoblastic tumours: a pilot study,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 33, no. 2, pp. 156–163, 2006.
[31]  T. Dhillon, C. Palmieri, and N. J. Sebire, “Value of whole body 18FDG-PET to identify the active site of gestational trophoblastic neoplasia,” Journal of Reproductive Medicine, vol. 51, no. 11, pp. 879–887, Nov 2006.
[32]  I. Ak and S. ?zalp, “Prognostic relevance of F-18 fluorodeoxyglucose positron emission tomography and computed tomography in molar pregnancy before evacuation,” Journal of Reproductive Medicine for the Obstetrician and Gynecologist, vol. 54, no. 7, pp. 441–446, 2009.
[33]  H. Zhuang, A. J. Yamamoto, N. Ghesani, and A. Alavi, “Detection of choriocarcinoma in the lung by FDG positron emission tomography,” Clinical Nuclear Medicine, vol. 26, no. 8, article 723, 2001.
[34]  N. Ishizuka, J. W. Brewer, M. M. Hreshchyshyn, et al., “Choriocarcinoma,” in Transactions of a Conference of the International Union against Cancer, J. F. Holland and M. M. Hreshchyshyn, Eds., vol. 3 of UICC Monograph Series, Appendix 1, Springer, Berlin, Germany, 1967.
[35]  Registration Committee for Trophoblastic Disease of the Japan Society of Obstetrics and Gynaecology, “Report of the registration committee for trophoblastic disease,” Acta Obstetricia et Gynaecologica Japonica, vol. 34, pp. 1805–1812, 1982.
[36]  H. C. Song, P. C. Wu, M. Y. Tong, and Y. O. Wang, “Clinical staging,” in Trophoblastic Tumours Diagnosis and Treatment People's Health, pp. 128–129, 1981.
[37]  D. B. Smith, L. Holden, E. S. Newlands, and K. D. Bagshawe, “Correlation between clinical staging (FIGO) and prognostic groups with gestational trophoblastic disease,” British Journal of Obstetrics and Gynaecology, vol. 100, no. 2, pp. 157–160, 1993.
[38]  G. T. Ross, D. P. Goldstein, R. Hertz, M. B. Lipsett, and W. D. Odell, “Sequential use of methotrexate and actinomycin D in the treatment of metastatic choriocarcinoma and related trophoblastic diseases in women,” The American Journal of Obstetrics and Gynecology, vol. 93, no. 2, pp. 223–229, 1965.
[39]  C. B. Hammond, L. G. Borchert, L. Tyrey, W. T. Creasman, and R. T. Parker, “Treatment of metastatic trophoblastic disease: good and poor prognosis,” American Journal of Obstetrics & Gynecology, vol. 115, no. 4, pp. 451–457, 1973.
[40]  H. E. Dijkema, J. G. Aalders, H. W. A. de Bruijn, R. N. Laurini, and P. H. B. Willemse, “Risk factors in gestational trophoblastic disease, and consequences for primary treatment,” European Journal of Obstetrics and Gynecology and Reproductive Biology, vol. 22, no. 3, pp. 145–152, 1986.
[41]  K. D. Bagshawe, “Risk and prognostic factors in trophoblastic neoplasia,” Cancer, vol. 38, no. 3, pp. 1373–1385, 1976.
[42]  World Health Organization, “Gestational trophoblastic disease,” WHO Technical Report Senes 692, WHO, Geneva, Switzerland, 1983.
[43]  E. S. Newlands, “Investigation and treatment of persistent trophoblastic disease and gestational trophoblastic tumours in the UK,” in Gestational Trophoblastic Disease, B. W. Hancock, E. S. Newlands, and R. S. Berkowitz, Eds., pp. 173–190, Chapman & Hall, London, UK, 1997.
[44]  FIGO Oncology Committee Report, “FIGO news,” International Journal of Gynecology & Obstetrics, vol. 39, no. 2, pp. 149–150, 1992.
[45]  L. H. Sobin and C. Wittekind, TNM Classification of Malignant Tumours, Wiley-Liss, New York, NY, USA, 1997.
[46]  J. R. Lurain and E. P. Elfstrand, “Single-agent methotrexate chemotherapy for the treatment of nonmetastatic gestational trophoblastic tumors,” The American Journal of Obstetrics and Gynecology, vol. 172, no. 2, pp. 574–579, 1995.
[47]  J. P. Roberts and J. R. Lurain, “Treatment of low-risk metastatic gestational trophoblastic tumors with single-agent chemotherapy,” American Journal of Obstetrics and Gynecology, vol. 174, no. 6, pp. 1917–1924, 1996.
[48]  J. T. Soper, D. L. Clarke-Pearson, A. Berchuck, G. Rodriguez, and C. B. Hammond, “5-Day methotrexate for women with metastatic gestational trophoblastic disease,” Gynecologic Oncology, vol. 54, no. 1, pp. 76–79, 1994.
[49]  M. Bower, E. S. Newlands, L. Holden et al., “EMA/CO for high-risk gestational trophoblastic tumors: results from a cohort of 272 patients,” Journal of Clinical Oncology, vol. 15, no. 7, pp. 2636–2643, 1997.
[50]  S. J. Kim, S. N. Bae, J. H. Kim et al., “Effects of multiagent chemotherapy and independent risk factors in the treatment of high-risk GTT—25 years experiences of KRI-TRD,” International Journal of Gynecology and Obstetrics, vol. 60, no. 1, pp. S85–S96, 1998.
[51]  R. P. Woolas, M. Bower, E. S. Newlands, M. Seckl, D. Short, and L. Holden, “Influence of chemotherapy for gestational trophoblastic disease on subsequent pregnancy outcome,” British Journal of Obstetrics and Gynaecology, vol. 105, no. 9, pp. 1032–1035, 1998.
[52]  R. S. Berkowitz, D. P. Goldstein, M. R. Bernstein, and B. Sablinska, “Subsequent pregnancy outcome in patients with molar pregnancy and gestational trophoblastic tumors,” Journal of Reproductive Medicine for the Obstetrician and Gynecologist, vol. 32, no. 9, pp. 680–684, 1987.
[53]  J. T. Soper, “Gestational trophoblastic disease,” Obstetrics & Gynecology, vol. 108, no. 1, pp. 176–187, 2006.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133