Muscle weakness is commonly seen in individuals after stroke, characterized by lower forces during a maximal volitional contraction. Accurate quantification of muscle weakness is paramount when evaluating individual performance and response to after stroke rehabilitation. The objective of this study was to examine the effect of subject-specific muscle force and activation deficits on predicted muscle coordination when using musculoskeletal models for individuals after stroke. Maximum force generating ability and central activation ratio of the paretic plantar flexors, dorsiflexors, and quadriceps muscle groups were obtained using burst superimposition for four individuals after stroke with a range of walking speeds. Two models were created per subject: one with generic and one with subject-specific activation and maximum isometric force parameters. The inclusion of subject-specific muscle data resulted in changes in the model-predicted muscle forces and activations which agree with previously reported compensation patterns and match more closely the timing of electromyography for the plantar flexor and hamstring muscles. This was the first study to create musculoskeletal simulations of individuals after stroke with subject-specific muscle force and activation data. The results of this study suggest that subject-specific muscle force and activation data enhance the ability of musculoskeletal simulations to accurately predict muscle coordination in individuals after stroke. 1. Introduction Musculoskeletal simulations have the potential to provide insight into muscle coordination and function for individuals with gait deficits. Previous musculoskeletal simulations have shown how muscle coordination can be altered based on changes in muscle properties [1–4]. A current limitation of musculoskeletal simulations, however, is that the appropriate muscle properties to use for a specific individual are unknown. For a particular subject or population (e.g., stroke), muscle parameters may differ greatly from default model values, and it has been suggested that selection of muscle parameters can have a relevant impact on simulation results [5–7]. Muscle weakness, characterized by lower forces during a maximal volitional contraction, is a major limiting factor affecting performance of poststroke gait [8]. The two main causes of poststroke muscle weakness are disuse atrophy [9] and impaired muscle activation by the central nervous system [10]. Studies have shown a reduction in skeletal muscle mass and an increase in intramuscular fat in the paretic limb of stroke
References
[1]
I. Jonkers, C. Stewart, and A. Spaepen, “The complementary role of the plantarflexors, hamstrings and gluteus maximus in the control of stance limb stability during gait,” Gait and Posture, vol. 17, no. 3, pp. 264–272, 2003.
[2]
E. J. Goldberg and R. R. Neptune, “Compensatory strategies during normal walking in response to muscle weakness and increased hip joint stiffness,” Gait and Posture, vol. 25, no. 3, pp. 360–367, 2007.
[3]
M. Xiao and J. Higginson, “Sensitivity of estimated muscle force in forward simulation of normal walking,” Journal of Applied Biomechanics, vol. 26, no. 2, pp. 142–149, 2010.
[4]
B. A. Knarr, D. S. Reisman, S. A. Binder-Macleod, and J. S. Higginson, “Understanding compensatory strategies for muscle weakness during gait by simulating activation deficits seen post-stroke,” Gait and Posture, vol. 38, no. 2, pp. 270–275, 2013.
[5]
A. S. Arnold, S. Salinas, D. J. Hakawa, and S. L. Delp, “Accuracy of muscle moment arms estimated from MRI-based musculoskeletal models of the lower extremity,” Computer Aided Surgery, vol. 5, no. 2, pp. 108–119, 2000.
[6]
A. S. Arnold, S. S. Blemker, and S. L. Delp, “Evaluation of a deformable musculoskeletal model for estimating muscle-tendon lengths during crouch gait,” Annals of Biomedical Engineering, vol. 29, no. 3, pp. 263–274, 2001.
[7]
A. Erdemir, S. McLean, W. Herzog, and A. J. van den Bogert, “Model-based estimation of muscle forces exerted during movements,” Clinical Biomechanics, vol. 22, no. 2, pp. 131–154, 2007.
[8]
W. M. Landau and S. A. Sahrmann, “Preservation of directly stimulated muscle strength in hemiplegia due to stroke,” Archives of Neurology, vol. 59, no. 9, pp. 1453–1457, 2002.
[9]
A. S. Ryan, C. L. Dobrovolny, G. V. Smith, K. H. Silver, and R. F. Macko, “Hemiparetic muscle atrophy and increased intramuscular fat in stroke patients,” Archives of Physical Medicine and Rehabilitation, vol. 83, no. 12, pp. 1703–1707, 2002.
[10]
E. Knuttson and C. Richards, “Different types of disturbed motor control in gait of hemiparetic patients,” Brain, vol. 102, no. 2, pp. 405–430, 1979.
[11]
J. W. Ramsay, P. J. Barrance, T. S. Buchanan, and J. S. Higginson, “Paretic muscle atrophy and non-contractile tissue content in individual muscles of the post-stroke lower extremity,” Journal of Biomechanics, vol. 44, no. 16, pp. 2741–2746, 2011.
[12]
S. J. Olney and C. Richards, “Hemiparetic gait following stroke. Part I: characteristics,” Gait and Posture, vol. 4, no. 2, pp. 136–148, 1996.
[13]
S. Flynn, B. A. Knarr, R. Perumal, T. M. Kesar, and S. A. Binder-Macleod, “Using submaximal contractions to predict the maximum force-generating ability of muscles,” Muscle and Nerve, vol. 45, no. 6, pp. 849–858, 2012.
[14]
S. K. Stackhouse, J. C. Dean, S. C. K. Lee, and S. A. Binder-Macleod, “Measurement of central activation failure of the quadriceps femoris in healthy adults,” Muscle and Nerve, vol. 23, no. 11, pp. 1706–1712, 2000.
[15]
B. A. Knarr, J. S. Higginson, and S. A. Binder-Macleod, “Validation of an adjustment equation for the burst superimposition technique in subjects post-stroke,” Muscle and Nerve, vol. 46, no. 2, pp. 267–269, 2012.
[16]
B. A. Knarr, J. W. Ramsay, T. S. Buchanan, J. S. Higginson, and S. A. Binder-Macleod, “Muscle volume as a predictor of maximum force generating ability in the plantar flexors post-stroke,” Muscle Nerve, vol. 48, no. 6, pp. 971–976, 2013.
[17]
C. S. Klein, D. Brooks, D. Richardson, W. E. McIlroy, and M. T. Bayley, “Voluntary activation failure contributes more to plantar flexor weakness than antagonist coactivation and muscle atrophy in chronic stroke survivors,” Journal of Applied Physiology, vol. 109, no. 5, pp. 1337–1346, 2010.
[18]
M. S. Fimland, P. M. R. Moen, T. Hill et al., “Neuromuscular performance of paretic versus non-paretic plantar flexors after stroke,” European Journal of Applied Physiology, vol. 111, no. 12, pp. 3041–3049, 2011.
[19]
T. M. Kesar, D. S. Reisman, M. Roos, R. Perumal, B. Farquhar W, and S. A. Binder-Macleod, “Novel locomotor training improves gait performance, activity, and participation in individuals with chronic stroke,” in Proceedings of the Physical Therapy Combined Sections Meeting, vol. 34, 2010.
[20]
S. K. Stackhouse, J. E. Stevens, C. D. Johnson, L. Snyder-Mackler, and S. A. Binder-Macleod, “Predictability of maximum voluntary isometric knee extension force from submaximal contractions in older adults,” Muscle and Nerve, vol. 27, no. 1, pp. 40–45, 2003.
[21]
S. L. Delp, F. C. Anderson, A. S. Arnold et al., “OpenSim: open-source software to create and analyze dynamic simulations of movement,” IEEE Transactions on Biomedical Engineering, vol. 54, no. 11, pp. 1940–1950, 2007.
[22]
D. G. Thelen, F. C. Anderson, and S. L. Delp, “Generating dynamic simulations of movement using computed muscle control,” Journal of Biomechanics, vol. 36, no. 3, pp. 321–328, 2003.
[23]
D. Reisman, T. Kesar, R. Perumal et al., “Time course of functional and biomechanical improvements during a gait training intervention in persons with chronic stroke,” Journal of Neurologic Physical Therapy, vol. 37, no. 4, pp. 159–165, 2013.
[24]
C. L. Peterson, A. L. Hall, S. A. Kautz, and R. R. Neptune, “Pre-swing deficits in forward propulsion, swing initiation and power generation by individual muscles during hemiparetic walking,” Journal of Biomechanics, vol. 43, no. 12, pp. 2348–2355, 2010.
[25]
B. A. Knarr, T. M. Kesar, D. S. Reisman, S. A. Binder-Macleod, and J. S. Higginson, “Changes in the activation and function of the ankle plantar flexor muscles due to gait retraining in chronic stroke survivors,” Journal of Neuroengineering and Rehabilitation, vol. 10, p. 12, 2013.
[26]
P. W. Hodges and B. H. Bui, “A comparison of computer-based methods for the determination of onset of muscle contraction using electromyography,” Electroencephalography and Clinical Neurophysiologyl, vol. 101, no. 6, pp. 511–519, 1996.
[27]
J. E. Stevens, S. K. Stackhouse, S. A. Binder-Macleod, and L. Snyder-Mackler, “Are voluntary muscle activation deficits in older adults meaningful?” Muscle and Nerve, vol. 27, no. 1, pp. 99–101, 2003.
[28]
S. Nadeau, D. Gravel, A. B. Arsenault, and D. Bourbonnais, “Plantarflexor weakness as a limiting factor of gait speed in stroke subjects and the compensating role of hip flexors,” Clinical Biomechanics, vol. 14, no. 2, pp. 125–135, 1999.
[29]
R. R. Neptune, S. A. Kautz, and F. E. Zajac, “Contributions of the individual ankle plantar flexors to support, forward progression and swing initiation during walking,” Journal of Biomechanics, vol. 34, no. 11, pp. 1387–1398, 2001.