Background. Procurement of hearts from cardiopulmonary arrest and resuscitated (CPR) donors for transplantation is suboptimal. We studied the influences of donor factors and regional wait times on CPR donor heart utilization. Methods. From UNOS database (1998 to 2012), we identified 44,744 heart donors, of which 4,964 (11%) received CPR. Based on procurement of heart for transplantation, CPR donors were divided into hearts procured (HP) and hearts not procured (HNP) groups. Logistic regression analysis was used to identify predictors of heart procurement. Results. Of the 4,964 CPR donors, 1,427 (28.8%) were in the HP group. Donor characteristics that favored heart procurement include younger age (25.5?±?15?yrs versus 39?±?18?yrs, ), male gender (34% versus 23%, ), shorter CPR duration (<15?min versus >30?min, ), and head trauma (60% versus 15%). Among the 11 UNOS regions, the highest procurement was in Region 1 (37%) and the lowest in Region 3 (24%). Regional transplant volumes and median waiting times did not influence heart procurement rates. Conclusions. Only 28.8% of CPR donor hearts were procured for transplantation. Factors favoring heart procurement include younger age, male gender, short CPR duration, and traumatic head injury. Heart procurement varied by region but not by transplant volumes or wait times. 1. Introduction For patients with advanced heart failure awaiting heart transplantation (HTx), donor heart supply remains a limiting factor in offering the ultimate treatment option. Efforts to optimize management of potential heart donors have led to increased utilization of donor hearts [1], yet this increase falls far short of the existing demands on organs for transplantation [2]. New avenues that would increase available donor hearts have been explored, including donation after cardiac death [3], ex vivo organ resuscitation [4], and, importantly, extended donor selection criteria [5]. Of these extended criteria, cardiopulmonary arrest and resuscitated (CPR) organ donors have significantly increased the potential organ donor pool. In the past decade alone, there has been a 90% increase in the number of organ donors who were successfully resuscitated after cardiopulmonary arrest [2] (Figure 1). We previously reported that the clinical outcomes of heart transplantation from CPR donors are similar to the outcomes from non-CPR donors [6]. This finding was also noted in other solid organ transplantation studies [7, 8]. Figure 1: CPR donor percentage of the total heart donors. Despite these encouraging reports, utilization of CPR donor hearts
References
[1]
D. R. Wheeldon, C. D. O. Potter, A. Oduro, J. Wallwork, and S. R. Large, “Transforming the “unacceptable” donor: outcomes from the adoption of a standardized donor management technique,” Journal of Heart and Lung Transplantation, vol. 14, no. 4, pp. 734–742, 1995.
[2]
OPTN/SRTR 2011 Annual Data Report, HHS/HRSA/HSB/DOT, http://srtr.transplant.hrsa.gov/annual_reports/2011/flash/05_heart/index.html.
[3]
A. K. Singhal, J. D. Abrams, J. Mohara et al., “Potential suitability for transplantation of hearts from human non-heart-beating donors: Data review from the Gift of Life Donor Program,” Journal of Heart and Lung Transplantation, vol. 24, no. 10, pp. 1657–1664, 2005.
[4]
M. Cypel and S. Keshavjee, “Extracorporeal lung perfusion,” Current Opinion in Organ Transplantation, vol. 16, no. 5, pp. 469–475, 2011.
[5]
M. D. Samsky, C. B. Patel, A. Owen, et al., “Ten-year experience with extended criteria cardiac transplantation,” Circulation Heart Failure, vol. 6, no. 6, pp. 1230–1238, 2013.
[6]
M. A. Quader, L. G. Wolfe, and V. Kasirajan, “Heart transplantation outcomes from cardiac arrest-resuscitated donors,” The Journal of Heart and Lung Transplantation, vol. 32, no. 11, pp. 1090–1095, 2013.
[7]
C. S. Matsumoto, S. S. Kaufman, R. Girlanda et al., “Utilization of donors who have suffered cardiopulmonary arrest and resuscitation in intestinal transplantation,” Transplantation, vol. 86, no. 7, pp. 941–946, 2008.
[8]
K. Pilarczyk, B. R. Osswald, N. Pizanis et al., “Use of donors who have suffered cardiopulmonary arrest and resuscitation in lung transplantation,” European Journal of Cardio-Thoracic Surgery, vol. 39, no. 3, pp. 342–347, 2011.
[9]
E. Keitel, T. Michelon, A. F. dos Santos et al., “Renal transplants using expanded cadaver donor criteria,” Annals of Transplantation, vol. 9, no. 2, pp. 23–24, 2004.
[10]
K. K. Khush, R. Menza, J. Nguyen, J. G. Zaroff, and B. A. Goldstein, “Donor predictors of allograft use and recipient outcomes after heart transplantation,” Circulation: Heart Failure, vol. 6, no. 2, pp. 300–309, 2013.
[11]
A. O. Ojo, A. B. Leichtman, J. D. Punch et al., “Impact of pre-existing donor hypertension and diabetes mellitus on cadaveric renal transplant outcomes,” American Journal of Kidney Diseases, vol. 36, no. 1, pp. 153–159, 2000.
[12]
J. Hollenberg, L. Svensson, and M. Rosenqvist, “Out-of-hospital cardiac arrest: 10 years of progress in research and treatment,” Journal of Internal Medicine, vol. 273, no. 6, pp. 572–583, 2013.
[13]
C. M. Booth, R. H. Boone, G. Tomlinson, and A. S. Detsky, “Is this patient dead, vegetative, or severely neurologically impaired? Assessing outcome for comatose survivors of cardiac arrest,” Journal of the American Medical Association, vol. 291, no. 7, pp. 870–879, 2004.
[14]
J. Berdowski, R. A. Berg, J. G. P. Tijssen, and R. W. Koster, “Global incidences of out-of-hospital cardiac arrest and survival rates: systematic review of 67 prospective studies,” Resuscitation, vol. 81, no. 11, pp. 1479–1487, 2010.
[15]
D. J. Wilson, A. Fisher, K. Das et al., “Donors with cardiac arrest: improved organ recovery but no preconditioning benefit in liver allografts,” Transplantation, vol. 75, no. 10, pp. 1683–1687, 2003.
[16]
A. A. Ali, E. Lim, M. Thanikachalam et al., “Cardiac arrest in the organ donor does not negatively influence recipient survival after heart transplantation.,” European Journal of Cardio-Thoracic Surgery, vol. 31, no. 5, pp. 929–933, 2007.
[17]
A. O. Ojo, J. A. Hanson, H. Meier-Kriesche et al., “Survival in recipients of marginal cadaveric donor kidneys compared with other recipients and wait-listed transplant candidates,” Journal of the American Society of Nephrology, vol. 12, no. 3, pp. 589–597, 2001.
[18]
D. J. Verran, T. Kusyk, D. Painter et al., “Clinical experience gained from the use of 120 steatotic donor livers for orthotopic liver transplantation,” Liver Transplantation, vol. 9, no. 5, pp. 500–505, 2003.
[19]
M. Berman, K. Goldsmith, D. Jenkins et al., “Comparison of outcomes from smoking and nonsmoking donors: thirteen-year experience,” The Annals of Thoracic Surgery, vol. 90, no. 6, pp. 1786–1792, 2010.
[20]
L. H. Lund, L. B. Edwards, A. Y. Kucheryavaya, et al., “The registry of the international society for heart and lung transplantation: thirtieth official adult heart transplant report—2013; focus theme: age,” The Journal of Heart and Lung Transplantation, vol. 32, no. 10, pp. 951–964, 2013.
[21]
S. K. Akkina, S. K. Asrani, Y. Peng, P. Stock, W. R. Kim, and A. K. Israni, “Development of organ-specific donor risk indices,” Liver Transplantation, vol. 18, no. 4, pp. 395–404, 2012.
[22]
R. C. Mackersie, O. L. Bronsther, and S. R. Shackford, “Organ procurement in patients with fatal head injuries: the fate of the potential donor,” Annals of Surgery, vol. 213, no. 2, pp. 143–150, 1991.
[23]
M. Kutschmann, C. L. Fischer-Fr?hlich, I. Schmidtmann, et al., “The joint impact of donor and recipient parameters on the outcome of heart transplantation in Germany after graft allocation,” Transplant International, vol. 27, no. 2, pp. 152–161, 2014.
[24]
G. L. Laffel, A. I. Barnett, S. Finkelstein, and M. P. Kaye, “The relation between experience and outcome in heart transplantation,” The New England Journal of Medicine, vol. 327, no. 17, pp. 1220–1225, 1992.
[25]
J. D. Hosenpud, T. J. Breen, E. B. Edwards, O. P. Daily, and L. G. Hunsicker, “The effect of transplant center volume on cardiac transplant outcome: a report of the United Network for Organ Sharing Scientific Registry,” Journal of the American Medical Association, vol. 271, no. 23, pp. 1844–1849, 1994.
[26]
A. Kilic, E. S. Weiss, D. D. Yuh et al., “Institutional factors beyond procedural volume significantly impact center variability in outcomes after orthotopic heart transplantation,” Annals of Surgery, vol. 256, no. 4, pp. 616–623, 2012.