|
VLSI Design 2014
Performance Analysis of Modified Drain Gating Techniques for Low Power and High Speed Arithmetic CircuitsDOI: 10.1155/2014/380362 Abstract: This paper presents several high performance and low power techniques for CMOS circuits. In these design methodologies, drain gating technique and its variations are modified by adding an additional NMOS sleep transistor at the output node which helps in faster discharge and thereby providing higher speed. In order to achieve high performance, the proposed design techniques trade power for performance in the delay critical sections of the circuit. Intensive simulations are performed using Cadence Virtuoso in a 45?nm standard CMOS technology at room temperature with supply voltage of 1.2?V. Comparative analysis of the present circuits with standard CMOS circuits shows smaller propagation delay and lesser power consumption. 1. Introduction As we move on to finer MOSFET technologies, transistor delay has decreased remarkably which helped in achieving higher performance in CMOS VLSI processors. With technology scaling, it is required to reduce the threshold and power supply voltages. As square of power supply voltage is directly proportional to dynamic power dissipation, to achieve less consumption of power, supply voltage has to be reduced. Static power and dynamic power are two main components of total power dissipation. Static power consumption is calculated in the form of leakage current through each device. Substantial increase has been observed in subthreshold leakage current with scaling of threshold voltage [1]. Subthreshold current is given by [1] where where thermal voltage, , is the mobility, is the gate voltage, is the threshold voltage, is termed as drain to source voltage, and is the body effect coefficient. and are the depletion layer and gate oxide capacitances, respectively. To counteract the excessive leakage in CMOS circuit, many architectural techniques have been proposed over the years. Power gating [2] and stacking effect [3] are two well-known techniques for reducing leakage power dissipation. Power gating normally makes use of sleep transistors that are connected either between the power supply and the pull-up network (PUN) or between the pull-down network (PDN) and ground. Sleep transistors are switched on when the circuit is evaluating and they are switched off in standby mode to conserve the leakage power in the logic circuit. Multi-threshold-CMOS (MTCMOS) [4] technique is also an effective way to achieve considerable decline in leakage power consumption. In MTCMOS technique, high sleep transistors are added in the circuit whereas PUN and PDN use low devices. In dual threshold circuits [5], low devices are used in the delay
|