The introduction of an eccentricity in this system results in a geometric nonlinearity behavior. The midpoint of the diagonal member is connected to the corner joint using a brace member with a relatively low stiffness, thus forming a three-member bracing system in each braced panel. An iterative method of analysis has been developed to study the nonlinear load-deflection behavior of ODBS. The results indicate that the load-deflection behavior of this system follows a nonlinear stiffness-hardening pattern with two yielding points, which reflect the tensile failure of different bracings; the present study aims to investigate the efficiency of applying off-diagonal steel braces to reinforced concrete frames. To achieve this, three types of 2-story, 6-story, and 15-story structures without and with X-bracing and off-center bracing systems were modeled using SAP2000 software, and for micromodeling ANSYS software was used to achieve finite element results for an exact comparison between various retrofitting systems. The results showed that the structures strengthened by toggle bracing system revealed better behavior for low oscillation periods. Moreover, this type of bracing system is quite suitable for 10-story structures but not for higher ones. Its main problem, which requires special contrivances to solve, is the existence of a soft ground floor. 1. Introduction The earthquake catastrophe is one of the primary reasons for destruction of buildings, engineering infrastructures, and social systems [1]. Earthquake is known as the most common natural disaster since a large number of earthquakes of various magnitudes, which have caused serious damages, have been recorded in historical documents. According to these recorded earthquakes, the death toll is estimated to be around 800,000 people thus far [2]. Iran is located on the largest fold of earth surface which spreads throughout Saudi Arabia-Eurasia region with a surface area of 3,000,000?km2. Therefore, located on Alp-Himalaya chain, Iran is one of the most seismically active regions for which a lot of destructive earthquakes have been recorded thus far [3]. For example, a magnitude 6.6 earthquake hit southeast Iran on December 26, 2003, resulting in thousands of casualties and total destruction of Bam city. The total number of killed people was estimated to be 80,000. Such catastrophes happen not only because of the large magnitude of earthquakes but also as a result of nonstandard structures and weak buildings. However, reconstruction cost more than 10 billion dollars [4]. Appropriate design of structures
References
[1]
Y. Guan, X. Cheng, and Y. Zhang, “Study on the earthquake disaster reduction information management system and its application,” International Journal of Intelligent Systems and Applications, vol. 1, pp. 51–57, 2011.
[2]
H. Rastiveis, F. Samadzadegan, and P. Reinartz, “A fuzzy decision making system for building damage map creation using high resolution satellite imagery,” Natural Hazards and Earth System Science, vol. 13, no. 2, pp. 455–472, 2013.
[3]
A. Gourabi and M. Yamani, “Active faulting and quaternary landforms deformation related to the Nain fault,” The American Journal of Environmental Sciences, vol. 7, no. 5, pp. 441–447, 2011.
[4]
A. Amiri and R. Tabatabaei, “Earthquake risk management strategy plan using nonparametric estimation of hazard rate,” American Journal of Applied Sciences, vol. 5, no. 5, pp. 581–585, 2008.
[5]
F. Altun and F. Birdal, “Analytical investigation of a three-dimensional FRP-retrofitted reinforced concrete structure's behaviour under earthquake load effect in ANSYS program,” Natural Hazards and Earth System Science, vol. 12, no. 12, pp. 3701–3707, 2012.
[6]
A. Vatani Oskouei and M. H. Rafiee, “Damage modeling in reinforced concrete bending frames originated by quake and its restoration using X-bracing system,” Esteghlal, vol. 28, no. 1, pp. 49–73, 2009.
[7]
G. Ghodrati Amiri, A. Gholamrezatabar, and S. A. Razavian Amrei, “Evaluation of performance of reinforced concrete frame retrofitted using concentric steel bracing,” Journal of Structure and Steel: Iranian Society of Steel Structures, vol. 4, no. 4, pp. 17–25, 2008 (Persian).
[8]
G. R. Kumar, S. R. S. Kumar, and V. Kalyanaraman, “Behaviour of frames with non-buckling bracings under earthquake loading,” Journal of Constructional Steel Research, vol. 63, no. 2, pp. 254–262, 2007.
[9]
S. Sugano and M. Fujimura, “Seismic strengthening of existing reinforced concrete building,” in Proceedings of the 7th World Conference on Earthquake Engineering, vol. 4 of part 1, pp. 449–459, Istanbul, Turkey, 1980.
[10]
S. Kawamata and M. Ohnuma, “Strengthening effect of eccentric steel braces to existing reinforced concrete frames,” in Proceedings of the 2nd Seminar on Repair and Retrofit of Structures Conference, NSF, Ann Arbor, Mich, USA, 1981.
[11]
A. C. Masri and S. C. Goel, “Seismic design and testing of an RC slab-column frame strengthened by steel bracing,” Earthquake Spectra, vol. 12, no. 4, pp. 645–666, 1996.
[12]
T. D. Bush, L. A. Wyllie, and J. O. Jirsa, “Observations on two seismic strengthening schemes for concrete frames,” Earthquake Spectra, vol. 7, no. 4, pp. 511–527, 1991.
[13]
A. Tasnimi and A. Masoumi, “study of the behavior of reinforced concrete frames strengthened with steel brace,” in Proceedings of the 3rd International Conference on Seismology and Seismic Engineering, Tehran, Iran, 1999.
[14]
A. Kheyroddin, “study of non-linear behavior of reinforced concrete frames retrofitted with steel brace,” in Proceedings of the 1st Concrete and Development Conference, pp. 89–98, Tehran, Iran, 2001.
[15]
H. Abou-Elfath and A. Ghobarah, “Behaviour of reinforced concrete frames rehabilitated with concentric steel bracing,” Canadian Journal of Civil Engineering, vol. 27, no. 3, pp. 433–444, 2000.
[16]
M. R. Maheri and R. Akbari, “Seismic behaviour factor, R, for steel X-braced and knee-braced RC buildings,” Engineering Structures, vol. 25, no. 12, pp. 1505–1513, 2003.
[17]
H. A. Moghaddam and H. E. Estekanchi, “Seismic behaviour of offcentre bracing systems,” Journal of Constructional Steel Research, vol. 51, no. 2, pp. 177–196, 1999.
[18]
H. A. Moghaddam and H. Estekanchi, “On the characteristics of an off-centre bracing system,” Journal of Constructional Steel Research, vol. 35, no. 3, pp. 361–376, 1995.
[19]
M. Berberian and I. Navai, “Naghan (Chahar Mahal Bakhtiari-High Zagros, Iran) earthquake of 6 april 1977. A preliminary field report and a seismotectonic discussion,” Annals of Geophysics, vol. 40, no. 1, pp. 51–77, 1977.
[20]
J. H. Steidl and Y. Lee, “The SCEC Phase III strong-motion database,” Bulletin of the Seismological Society of America, vol. 90, no. 6, pp. S113–S135, 2000.
[21]
S. A. R. Amrei, G. G. Amiri, and D. Rezaei, “Evaluation of horizontal seismic hazard of Naghan, Iran,” World Academy of Science, Engineering and Technology, vol. 5, pp. 1456–1458, 2011.
[22]
M. R. Maheri and H. Ghaffarzadeh, “Connection overstrength in steel-braced RC frames,” Engineering Structures, vol. 30, no. 7, pp. 1938–1948, 2008.
[23]
H. Ghaffarzadeh and M. R. Maheri, “Cyclic tests on the internally braced RC frames,” Journal of Seismology and Earthquake Engineering, vol. 8, no. 2, pp. 177–186, 2006.
[24]
C. G. Karayannis, M. J. Favvata, and D. J. Kakaletsis, “Seismic behaviour of infilled and pilotis RC frame structures with beam-column joint degradation effect,” Engineering Structures, vol. 33, no. 10, pp. 2821–2831, 2011.
[25]
K. Ramin, Seismic investigation and numerical analysis of RC frame retrofitted by off diagonal steel bracing system (ODBS) [Master of Science Degree], Department of Civil Engineering, Shiraz University, 2009 (Persian).
[26]
M. A. Youssef, H. Ghaffarzadeh, and M. Nehdi, “Seismic performance of RC frames with concentric internal steel bracing,” Engineering Structures, vol. 29, no. 7, pp. 1561–1568, 2007.
[27]
C. Uang, “Establishing R (or Rw) and Cd factors for building seismic provisions,” Journal of Structural Engineering, vol. 117, no. 1, pp. 19–28, 1991.
[28]
ATC, “Structural response modification factors,” ATC-19 Report, Applied Technology Council, Redwood City, Calif, USA, 1995.
[29]
I. Anam and Z. N. Shoma, “Nonlinear properties of reinforced concrete structures,” Tech_ Bulletin n & Journal, Department of Civil and Environmental Engineering, The University of Asia Pacific, 2011.
[30]
Y. Bozorgnia and V. Bertero, Earthquake Engineering: From Engineering Seismology to Performance-Based Engineering, CRC Press, New York, NY, USA, 2004.
[31]
M. R. Maheri and A. Hadjipour, “Experimental investigation and design of steel brace connection to RC frame,” Engineering Structures, vol. 25, no. 13, pp. 1707–1714, 2003.
[32]
ANSYS, ANSYS Manual, ANSYS, Canonsburg, Pa, USA, 2009–2015.
[33]
ATC, “A critical review of current approaches to earthquake-resistant design,” ATC-34 Report, Applied Technology Council, Redwood City, Calif, USA, 1995.