全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Structural Investigation of Photocatalyst Solid Ag1?xCuxInS2 Quaternary Alloys Sprayed Thin Films Optimized within the Lattice Compatibility Theory (LCT) Scope

DOI: 10.1155/2014/325271

Full-Text   Cite this paper   Add to My Lib

Abstract:

CuxAg1?xInS2 solid thin films were fabricated through a low-cost process. Particular process-related enhanced properties lead to reaching a minimum of lattice mismatch between absorber and buffer layers within particular solar cell devices. First, copper-less samples X-ray diffraction analysis depicts the presence of AgInS2 ternary compound in chalcopyrite tetragonal phase with privileged (112) peak ( ?) according to JCPDS 75-0118 card. Second, when x content increases, we note a shift of the same preferential orientation (112) and its value reaches 1.63 ? corresponding to CuInS2 chalcopyrite tetragonal material according to JCPDS 89-6095 file. Finally, the formation and stability of these quaternaries have been discussed in terms of the lattice compatibility in relation with silver-copper duality within indium disulfide lattice structure. Plausible explanations for the extent and dynamics of copper incorporation inside AgInS2 elaborated ternary matrices have been proposed. 1. Introduction AgInS2 and CuInS2, which are both chalcopyrite ternary solids belonging to I-III-VI2 compounds, are attractive materials of photovoltaic cells and optoelectronic devices because of their good stability under solar radiation, their large absorption coefficient, and their band gap energy lying in 1.5?2.1?eV domain. Theoretical calculation regarding solar conversion efficiencies of 27–32% has been made with I-III-VI2 ternaries as absorbers. Even thin film solar cells of 12% efficiency have been successfully reached [1, 2]. However, these ternaries solar cells are typically fabricated by means of high-cost techniques, so that low-cost methods demand is noticeably increasing. Indeed, the spray pyrolysis technique has not been widely used for preparing a large scale of such ternary materials for energy conversion purpose. In the same line, the mixture of both Ag and Cu as precursors of ternary materials in the started spraying solutions could lead to some various alloys having interesting physical characterisations. Ciszek has proposed a method to fabricate the quaternary CuxAg1?xInSe2 [3]. It is noted that CuInS2 material solidifies in chalcopyrite structures [4] whereas AgInS2 can solidify in two forms: chalcopyrite and orthorhombic [5, 6]. Moreover, the latest ternary compound could be obtained as n-type or p-type semiconductor using appropriate experimental chemical conditions [7–14]. In this work, we report for the first time the preparation on glass substrates at 420°C of quaternaries CuxAg1?xInS2 thin films using the spray pyrolysis technique from aqueous solutions.

References

[1]  J. M. Meese, J. C. Manthuruthil, and D. R. Locker, “CuInS2 diodes for solar-energy conversion,” Bulletin of the American Physical Society, vol. 20, pp. 696–697, 1975.
[2]  D. Braunger, D. Hariskos, T. Walter, and H. W. Schock, “An 11.4% efficient polycrystalline thin film solar cell based on CuInS2 with a Cd-free buffer layer,” Solar Energy Materials and Solar Cells, vol. 40, no. 2, pp. 97–102, 1996.
[3]  T. F. Ciszek, “Melt growth and some properties of CuxAg1-xInSe2 and CuInyGa1-ySe2 chalcopyrite solid solution crystals,” Journal of Crystal Growth, vol. 79, no. 1–3, pp. 689–694, 1986.
[4]  N. Guezmir, J. Ouerfelli, and S. Belgacem, “Optical properties of sprayed CuInS2 thin layers,” Materials Chemistry and Physics, vol. 96, no. 1, pp. 116–123, 2006.
[5]  D. Gherouel, I. Gaied, K. Boubaker, N. Yacoubi, and M. Amlouk, “Some physical investigations of AgInS2-xSex thin film compounds obtained from AgInS2 annealed in seleneide atmosphere,” Journal of Alloys and Compounds, vol. 545, pp. 190–199, 2012.
[6]  D. Gherouel, I. Gaied, and M. Amlouk, “Effect of heat treatment in air on physical properties of AgInS2 sprayed thin films,” Journal of Alloys and Compounds, vol. 566, pp. 147–155, 2013.
[7]  Z. Aissa, T. Ben Nasrallah, M. Amlouk, J. C. Bernède, and S. Belgacem, “Some physical investigations on AgInS2 sprayed thin films,” Solar Energy Materials and Solar Cells, vol. 90, no. 7-8, pp. 1136–1146, 2006.
[8]  Z. Aissa, M. Amlouk, T. Ben Nasrallah, J. C. Bernède, and S. Belgacem, “Effect of S/In concentration ratio on the physical properties of AgInS2-sprayed thin films,” Solar Energy Materials and Solar Cells, vol. 91, no. 6, pp. 489–494, 2007.
[9]  M. Ortega-Lopez, A. Morales-Acevedo, and O. Solorza-Feria, “Physical properties of AgInS2 films prepared by chemical spray pyrolysis,” Thin Solid Films, vol. 385, no. 1-2, pp. 120–125, 2001.
[10]  M. L. Aguilera, D. Ramírez-Rosales, and M. A. González-Trujillo, “Change from n-type to p-type conductivity on AgInS2 and AgInS2:Sn polycrystalline thin films prepared by spray pyrolysis technique,” Thin Solid Films, vol. 517, no. 7, pp. 2535–2537, 2009.
[11]  M. Ortega Lopez, O. Vigil-Galan, F. Cruz Gandarilla, and O. Soloriza, “Preparation of AgInS2 chalcopyrite thin films by chemical spray pyrolysis,” Materials Research Bulletin, vol. 38, no. 1, pp. 55–61, 2003.
[12]  M. L. A. Aguilera, J. R. Hernández, M. A. G. Trujillo, M. O. López, and G. C. Puente, “Photoluminescence studies of chalcopyrite and orthorhombic AgInS2 thin films deposited by spray pyrolysis technique,” Thin Solid Films, vol. 515, no. 15, pp. 6272–6275, 2007.
[13]  Y. Akaki, S. Kurihara, M. Shirahama et al., “Structural, electrical and optical properties of AgInS2 thin films grown by thermal evaporation method,” Journal of Physics and Chemistry of Solids, vol. 66, no. 11, pp. 1858–1861, 2005.
[14]  A. Tadjarodi, A. H. Cheshmekhavar, and M. Imani, “Preparation of AgInS2 nanoparticles by a facile microwave heating technique; Study of effective parameters, optical and photovoltaic characteristics,” Applied Surface Science, vol. 263, pp. 449–456, 2012.
[15]  M. Zribi, M. Kanzari, and B. Rezig, “Optical constants of Na-doped CuInS2 thin films,” Materials Letters, vol. 60, no. 1, pp. 98–103, 2006.
[16]  K. Boubaker, A. Chaouachi, M. Amlouk, and H. Bouzouita, “Enhancement of pyrolysis spray disposal performance using thermal time-response to precursor uniform deposition,” EPJ Applied Physics, vol. 37, no. 1, pp. 105–109, 2007.
[17]  M. B. Rabeh and M. Kanzari, “Optical constants of Zn-doped CuInS2 thin films,” Thin Solid Films, vol. 519, no. 21, pp. 7288–7291, 2011.
[18]  F. Yakuphanoglu, A. Cukurovali, and I. Yilmaz, “Single-oscillator model and determination of optical constants of some optical thin film materials,” Physica B: Condensed Matter, vol. 353, no. 3-4, pp. 210–216, 2004.
[19]  M. S. Park, S. Y. Han, E. J. Bae, T. J. Lee, C. H. Chang, and S. O. Ryu, “Synthesis and characterization of polycrystalline CuInS2 thin films for solar cell devices at low temperature processing conditions,” Current Applied Physics, vol. 10, no. 3, pp. S379–S382, 2010.
[20]  B. V. Korzoun, I. V. Bodnar, and L. V. Yasyukevich, “Preparation and physical properties of AgxCu1-xS2 solid solutions,” in Proceedings of the 11th Conference on Ternary and Multinary Compounds (ICTMC '97), pp. 189–192, Salford, September 1997.
[21]  P. Petkova and K. Boubaker, “The Lattice Compatibility Theory (LCT): an attempt to explain Urbach tailing patterns in copper-doped bismuth sillenites (BSO) and germanates (BGO),” Journal of Alloys and Compounds, vol. 546, pp. 176–179, 2012.
[22]  S. Belgacem and R. Bennaceur, “Propriétés optiques des couches minces de SnO2 et CuInS2 airless spray,” Revue de Physique Appliquée, vol. 25, no. 12, pp. 1245–1258, 1990.
[23]  K. Boubaker, “Preludes to the Lattice Compatibility Theory LCT: urbach tailing controversial behavior in some nanocompounds,” ISRN Nanomaterials, vol. 2012, Article ID 173198, 4 pages, 2012.
[24]  R. Simha and T. Somcynsky, “On the statistical thermodynamics of spherical and chain molecule fluids,” Macromolecules, vol. 2, no. 4, pp. 342–350, 1969.
[25]  K. Boubaker, “The lattice compatibility theory: arguments for recorded I-III-O2 ternary oxide ceramics instability at low temperatures beside ternary telluride and sulphide ceramics,” Journal of Ceramics, vol. 2013, Article ID 734015, 6 pages, 2013.
[26]  R. Simha and P. S. Wilson, “Thermal expansion of amorphous polymers at atmospheric pressure. II. Theoretical considerations,” Macromolecules, vol. 6, no. 6, pp. 908–914, 1973.
[27]  K. Boubaker, M. Amlouk, Y. Louartassi, and H. Labiadh, “About unexpected crystallization behaviors of some ternary oxide and sulfide ceramics within lattice compatibility theory LCT framework,” Journal of the Australian Ceramic Society, vol. 49, no. 1, pp. 115–117, 2013.
[28]  I. Prigogine, N. Trappeniers, and V. Mathot, The Molecular Theory of Solutions, North Holland, Amsterdam, The Netherlands, 1957.
[29]  I. Prigogine, N. Trappeniers, and V. Mathot, “Statistical thermodynamics of r-MERS and r-MER solutions,” Discussions of the Faraday Society, vol. 15, pp. 93–107, 1953.
[30]  P. S. Wilson and R. Simha, “Thermal expansion of amorphous polymers at atmospheric pressure. I. Experimental,” Macromolecules, vol. 6, no. 6, pp. 902–908, 1973.
[31]  I. Prigogine, The Molecular Theory of Solutions, North-Holland, Amsterdam, The Netherlands, 1957.
[32]  J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids, Wiley, New York, NY, USA, 1954.
[33]  J. Park and H. Kim, “A new equation of state based on hole theory,” Fluid Phase Equilibria, vol. 144, no. 1-2, pp. 77–86, 1998.
[34]  Y. G. Asadov, Y. I. Alyev, and A. G. Babaev, “Effect of selenium or tellurium substitution for half of the sulfur atoms in AgCuS on its structure and the temperatures of its polymorphic transformations,” Inorganic Materials, vol. 44, no. 4, pp. 337–344, 2008.
[35]  T. E. Graedel, J. P. Franey, G. J. Gualtieri, G. W. Kammlott, and D. L. Malm, “On the mechanism of silver and copper sulfidation by atmospheric H2S and OCS,” Corrosion Science, vol. 25, no. 12, pp. 1163–1180, 1985.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133