Magnesium-based alloys are becoming a major industrial material for structural applications because of their potential weight saving characteristics. All the commercial Mg alloys like AZ, AM, AE, EZ, ZK, and so forth series are multicomponent and hence it is important to understand the phase relations of the alloying elements with Mg. In this work, eleven essential Mg-based binary systems including Mg-Al/Zn/Mn/Ca/Sr/Y/Ni/Ce/Nd/Cu/Sn have been reviewed. Each of these systems has been discussed critically on the aspects of phase diagram and thermodynamic properties. All the available experimental data has been summarized and critically assessed to provide detailed understanding of the systems. The phase diagrams are calculated based on the most up-to-date optimized parameters. The thermodynamic model parameters for all the systems except Mg-Nd have been summarized in tables. The crystallographic information of the intermetallic compounds of different binary systems is provided. Also, the heat of formation of the intermetallic compounds obtained from experimental, first principle calculations and CALPHAD optimizations are provided. In addition, reoptimization of the Mg-Y system has been done in this work since new experimental data showed wider solubility of the intermetallic compounds. 1. Introduction Magnesium is the eighth most abundant metal in the earth outer surface at approximately 2.5% of its composition. It is an alkaline earth element (Group II) that crystallizes in a hexagonal structure (hcp-A3). Magnesium is the lightest metallic material used for structural applications with a density of 1.738?g/cm3 in comparison with the densities of Al (2.70?g/cm3) and Fe (7.86?g/cm3). Magnesium alloys have an excellent combination of properties which includes excellent strength-to-weight ratio, good fatigue and impact strengths, and relatively large thermal and electrical conductivities [1–3] and excellent biocompatibility [4, 5]. This makes magnesium alloys one of the most promising light-weight materials for automotive [6], aerospace, consumer electronic (computer, camera, and cell phone), and biomedical applications due to its biodegradability. It is being used in the automotive industries in steering column parts, shift actuators, valve covers and housings, brackets, and intake manifold blades [7]. In nonautomotive applications, small magnesium die cast components are appearing in small engines, electronic devices, power tools, and medical equipment, such as portable oxygen pumps [7]. Recently, Mg-rich Mg-Ca-Zn biocompatible metallic glass having small
References
[1]
R. Gradinger and P. Stolfig, “Magnesium wrought alloys for automotive applications,” in Proceedings of the Minerals, Metals & Materials Society, pp. 231–236, March 2003.
[2]
M. O. Pekguleryuz, E. Baril, P. Labelle, and D. Argo, “Creep resistant Mg-Al-Sr alloys,” Journal of Advanced Materials, vol. 35, no. 3, pp. 32–38, 2003.
[3]
H. Mao, J. Brevick, C. Mobley, et al., “Microstructural characteristics of die cast AZ91D and AM60 magnesium alloys,” SAE Technical Paper, 1999.
[4]
B. Zberg, P. J. Uggowitzer, and J. F. L?ffler, “MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants,” Nature Materials, vol. 8, no. 11, pp. 887–891, 2009.
[5]
E. Ma and J. Xu, “Biodegradable alloys: the glass window of opportunities,” Nature Materials, vol. 8, no. 11, pp. 855–857, 2009.
[6]
E. Aghion, B. Bronfin, F. von Buch, S. Schumann, and H. Friedrich, “Dead sea magnesium alloys newly developed for high temperature applications,” in Proceedings of the Minerals, Metals & Materials Society, pp. 177–182, March 2003.
[7]
B. Mark, “Remarkable magnesium: the 21st century structural alloy for small components,” White Paper, FisherCast Global Corporation, 2013.
[8]
A. Boby, U. Pillai, B. Pillai, and B. Pai, “Developments in magnesium alloys for transport applications—an overview,” Indian Foundry Journal, vol. 57, pp. 29–37, 2011.
[9]
Z. Yanga, J. X. Zhang, G. W. Lorimer, and J. Robson, “Review on research and development of magnesium alloys,” Acta Metallurgica Sinica (English Letters), vol. 21, pp. 313–328, 2008.
[10]
R. Agarwal and F. Sommer, “Calorimetric measurements of liquid aluminum-magnesium alloys,” Zeitschrift für Metallkunde, vol. 82, pp. 118–120, 1991.
[11]
Z. Moser, W. Zakulski, K. Rzyman et al., “New thermodynamic data for liquid Aluminum-Magnesium alloys from emf, vapor pressures, and calorimetric studies,” Journal of Phase Equilibria, vol. 19, no. 1, pp. 38–47, 1998.
[12]
Y. J. Bhatt and S. P. Garg, “Thermodynamic study of liquid aluminum-magnesium alloys by vapor pressure measurements,” Metallurgical Transactions B, vol. 7, no. 2, pp. 271–275, 1976.
[13]
G. R. Belton and Y. K. Rao, “Galvanic cell study of activities in magnesium-aluminum liquid alloys,” Transactions of the AIME, vol. 245, no. 10, pp. 2189–2193, 1969.
[14]
J. M. Juneja, K. P. Abraham, and G. N. K. Iyengar, “Thermodynamic study of liquid magnesium-aluminium alloys by vapour pressure measurement using the boiling point method,” Scripta Metallurgica, vol. 20, no. 2, pp. 177–180, 1986.
[15]
V. P. Kazimirov and G. I. Batalin, “Calculation of thermodynamic properties of aluminum-magnesium melts by the pseudopotential method,” Ukrainskii Khimicheskii Zhurnal, vol. 49, no. 8, pp. 887–888, 1983.
[16]
H. Feufel and F. Sommer, “Thermodynamic investigations of binary liquid and solid CuMg and MgNi alloys and ternary liquid CuMgNi alloys,” Journal of Alloys and Compounds, vol. 224, no. 1, pp. 42–54, 1995.
[17]
E. E. Lukashenko and A. M. Pogodaev, “Thermodynamics of magnesium-aluminum molten alloys,” Izvestiya Akademii Nauk SSSR, Metally, pp. 91–96, 1971.
[18]
V. N. Eremenko and G. M. Lukashenko, “Thermodynamic properties of liquid solutions in the magnesium-aluminum system,” Ukrainskii Khimicheskii Zhurnal (Russian Edition), vol. 28, pp. 462–466, 1962.
[19]
A. Schneider and E. K. Stoll, “Metal vapor pressure. I. Vapor pressure of magnesium over aluminum-magnesium alloys,” Zeitschrift fur Angewandte Physik Und Chemie, vol. 47, pp. 519–526, 1941.
[20]
M. Y. Vyazner, A.G. Morachevskii, and A. Y. U. Taits, “Thermodynamic properties of magnesium-aluminum system molten alloys,” Zhurnal Prikladnoi Khimii, vol. 44, no. 5, pp. 722–726, 1971.
[21]
B. L. Tiwari, “Thermodynamic properties of liquid aluminum-magnesium alloys measured by the emf method,” Metallurgical and Materials Transactions A, vol. 18, pp. 1645–1651, 1987.
[22]
P. Ghosh, M. Mezbahul-Islam, and M. Medraj, “Critical assessment and thermodynamic modeling of Mg-Zn, Mg-Sn, Sn-Zn and Mg-Sn-Zn systems,” Calphad, vol. 36, pp. 28–43, 2012.
H. Pyka, Untersuchungen zur thermodynamik glasbildender tern?rer Legierungen [Ph.D. thesis], University Stuttgart, Stuttgart, Germany, 1984.
[25]
M. Kawakami, Scientific Reports of Reserch Institute Tohoku University, vol. 19, 1930.
[26]
R. Agarwal, S. G. Fries, H. L. Lukas et al., “Assessment of the Mg-Zn system,” Zeitschrift für Metallkunde, vol. 83, pp. 216–223, 1992.
[27]
A. M. Pogodaev and E. E. Lukashenko, “Thermodynamic study of molten magnesium and zinc alloys,” Zhurnal Fizicheskoi Khimii, vol. 46, pp. 337–339, 1972.
[28]
Z. Moser, “Thermodynamic properties of dilute solutions of magnesium in zinc,” Metallurgical and Materials Transactions, vol. 5, no. 6, pp. 1445–1450, 1974.
[29]
P. Chiotti and E. P. Stevens, “Thermodynamic properties of Mg-Zn alloys,” Transactions of the American Society for Metals, vol. 233, pp. 198–203, 1965.
[30]
J. Terpilowski, “Thermodynamic properties of liquid zinc-magnesium solutions,” Bulletin de l’Academie Polonaise des Sciences, Serie des Sciences Chimiques, vol. 10, pp. 221–225, 1962.
[31]
Z. Kozuka, J. Moriyama, and I. Kushima, “Activities of the component metals in fused binary alloys (Zn-Al system and Zn-Mg system),” Denki Kagaku, vol. 28, pp. 523–526, 1960.
[32]
M. Asgar-Khan and M. Medraj, “Thermodynamic description of the Mg-Mn, Al-Mn and Mg-Al-Mn systems using the modified quasichemical model for the liquid phases,” Materials Transactions, vol. 50, no. 5, pp. 1113–1122, 2009.
[33]
M. V. Chukhov, “On the solubility of Mn in liquid Mg,” Doklady Akademii Nauk SSSR, vol. 1, pp. 302–305, 1958.
[34]
M. Drits, E. Padezhnova, and N. Miklina, “The combined solubility of noedymium and zinc in solid magnesium,” Russian Metallurgy, vol. 3, pp. 143–146, 1974.
[35]
A. Schneider and S. Hennistobbe, “Structure and technical preparation of corrosion-resistant magnesium-manganese alloys,” Metall, vol. 4, pp. 178–183, 1950.
[36]
G. Siebel, “The solubility of iron, manganese, and zirconium in magnesium and magnesium alloys,” Zeitschrift für Metallkunde, vol. 39, pp. 22–27, 1948.
[37]
N. Tiner, “The solubility of manganese in liquid magnesium,” Metals Technology, pp. 1–7, 1945.
[38]
J. D. Grogan and J. L. Haughton, “Alloys of Mg. XIV. The constitution of the Mg-rich alloys of Mg and Mn,” Journal of the Institute of Metals, vol. 69, pp. 241–248, 1943.
[39]
M. E. Drits, Z. A. Sviderskaya, and L. L. Rokhlin, “Alloys of the system magnesium-neodymium-manganese in the region close to the magnesium corner,” Zhurnal Neorganicheskoi Khimii, vol. 7, pp. 2771–2777, 1962.
[40]
E. Schmid and G. Siebel, “Determination of solid solubility of Mn in Mg by x-ray analysis,” Metallwirtschaft, vol. 10, pp. 923–925, 1931.
[41]
M. Aljarrah and M. Medraj, “Thermodynamic modelling of the Mg-Ca, Mg-Sr, Ca-Sr and Mg-Ca-Sr systems using the modified quasichemical model,” Calphad, vol. 32, no. 2, pp. 240–251, 2008.
[42]
P. Ghosh and M. Medraj, “Thermodynamic calculation of the Mg-Mn-Zn and Mg-Mn-Ce systems and re-optimization of their constitutive binaries,” Calphad, vol. 41, pp. 89–107, 2013.
[43]
F. Islam and M. Medraj, “The phase equilibria in the Mg-Ni-Ca system,” Calphad, vol. 29, no. 4, pp. 289–302, 2005.
[44]
M. Mezbahul-Islam, E. Essadiqi, and M. Medraj, “A differential scanning calorimetric study of the Mg-Cu-Y system,” Materials Science Forum, vol. 706–709, pp. 1215–1220, 2012.
[45]
M. Mezbahul-Islam and M. Medraj, “A critical thermodynamic assessment of the Mg-Ni, Ni-Y binary and Mg-Ni-Y ternary systems,” Calphad, vol. 33, no. 3, pp. 478–486, 2009.
[46]
M. Mezbahul-Islam and M. Medraj, “Thermodynamic modeling of the Mg-Cu-Ni ternary system using the modified quasichemical model,” in Proceedings of the Conference of Metallurgists (COM '11), pp. 241–253, Montreal, Canada, 2011.
[47]
S. Wasiur-Rahman and M. Medraj, “Critical assessment and thermodynamic modeling of the binary Mg-Zn, Ca-Zn and ternary Mg-Ca-Zn systems,” Intermetallics, vol. 17, no. 10, pp. 847–864, 2009.
[48]
M. A. Parvez, M. Medraj, E. Essadiqi, A. Muntasar, and G. Dénès, “Experimental study of the ternary magnesium-aluminium-strontium system,” Journal of Alloys and Compounds, vol. 402, no. 1-2, pp. 170–185, 2005.
[49]
T. Balakumar and M. Medraj, “Thermodynamic modeling of the Mg-Al-Sb system,” Calphad, vol. 29, no. 1, pp. 24–36, 2005.
[50]
F. Islam and M. Medraj, “Thermodynamic modelling of the Mg-Al-Ca system,” Canadian Metallurgical Quarterly, vol. 44, no. 4, pp. 523–536, 2005.
[51]
F. Islam, A. K. Thykadavil, and M. Medraj, “A computational thermodynamic model of the Mg-Al-Ge system,” Journal of Alloys and Compounds, vol. 425, no. 1-2, pp. 129–139, 2006.
[52]
S. Al Shakhshir and M. Medraj, “Computational thermodynamic model for the Mg-Al-Y system,” Journal of Phase Equilibria and Diffusion, vol. 27, no. 3, pp. 231–244, 2006.
[53]
M. Aljarrah, U. Aghaulor, and M. Medraj, “Thermodynamic assessment of the Mg-Zn-Sr system,” Intermetallics, vol. 15, no. 2, pp. 93–97, 2007.
[54]
M. Aljarrah, M. Medraj, J. Li, and E. Essadiqi, “Phase equilibria of the constituent ternaries of the Mg-Al-Ca-Sr system,” JOM, vol. 61, no. 5, pp. 68–74, 2009.
[55]
Y.-N. Zhang, D. Kevorkov, J. Li, E. Essadiqi, and M. Medraj, “Determination of the solubility range and crystal structure of the Mg-rich ternary compound in the Ca-Mg-Zn system,” Intermetallics, vol. 18, no. 12, pp. 2404–2411, 2010.
[56]
Y. N. Zhang, D. Kevorkov, F. Bridier, and M. Medraj, “Experimental study of the Ca-Mg-Zn system using diffusion couples and key alloys,” Science and Technology of Advanced Materials, vol. 12, no. 2.
[57]
M. Mezbahul-Islam and M. Medraj, “Phase equilibrium in Mg-Cu-Y,” Scientific Reports, vol. 3, article 3033, 2013.
[58]
F. Sommer, B. Predel, and D. Assman, “Thermodynamic investigation of liquid alloys in the systems Mg-Ca, Mg-Sr, and Mg-Ba,” Zeitschrift für Metallkunde, vol. 68, pp. 347–349, 1977.
[59]
V. P. Mashovets and L. V. Puchkov, “Vapour pressure over molten alloys in the system Mg-Ca,” Zhurnal Prikladnoi Khimii, vol. 35, pp. 1009–1014, 1965.
[60]
F. Sommer, “Thermodynamic activities of liquid alloys in the system Ca-Mg using a modified ruff method,” Zeitschrift für Metallkund, vol. 70, no. 8, pp. 545–547, 1979.
[61]
F. Sommer, “Determination of thermodynamic activities of liquid alloys in the systems Mg-Sr and Ba-Mg,” Zeitschrift für Metallkunde, vol. 71, pp. 434–437, 1980.
[62]
H. D. Zhao, G. W. Qin, Y. P. Ren, W. L. Pei, D. Chen, and Y. Guo, “The maximum solubility of y in α-Mg and composition ranges of Mg24Y5-x and Mg2Y1-x intermetallic phases in Mg-Y binary system,” Journal of Alloys and Compounds, vol. 509, no. 3, pp. 627–631, 2011.
[63]
H. Flandorfer, M. Giovannini, A. Saccone, P. Rogl, and R. Ferro, “The Ce-Mg-Y system,” Metallurgical and Materials Transactions A, vol. 28, no. 2, pp. 265–276, 1997.
[64]
Z. A. Sviderskaya and E. M. Padezhnova, “Phase equilibriums in magnesium-yttrium and magnesium-yttrium-manganese systems,” Izvestiya Akademii Nauk SSSR, Metally, pp. 183–190, 1968.
[65]
J. F. Smith, D. M. Bailey, D. B. Novotny, and J. E. Davison, “Thermodynamics of formation of yttrium-magnesium intermediate phases,” Acta Metallurgica, vol. 13, no. 8, pp. 889–895, 1965.
[66]
M. Mezbahul-Islam, D. Kevorkov, and M. Medraj, “The equilibrium phase diagram of the magnesium-copper-yttrium system,” The Journal of Chemical Thermodynamics, vol. 40, no. 7, pp. 1064–1076, 2008.
[67]
R. Agarwal, H. Feufel, and F. Sommer, “Calorimetric measurements of liquid LaMg, MgYb and MgY alloys,” Journal of Alloys and Compounds, vol. 217, no. 1, pp. 59–64, 1995.
[68]
V. Ganesan, F. Schuller, H. Feufel, F. Sommer, and H. Ipser, “Thermodynamic properties of ternary liquid Cu-Mg-Y alloys,” Zeitschrift für Metallkunde, vol. 88, no. 9, pp. 701–710, 1997.
[69]
V. Ganesan and H. Ipser, “Thermodynamic properties of liquid magnesium-yttrium alloys,” Journal de Chimie Physique et de Physico-Chimie Biologique, vol. 94, no. 5, pp. 986–991, 1997.
[70]
I. N. Pyagai, A. V. Vakhobov, N. G. Shmidt, O. V. Zhikhareva, and M. I. Numanov, “Heats of formation of magnesium intermetallic compounds with yttrium, lanthanum, and neodymium,” Doklady Akademii Nauk Tadzhikshoi SSR, vol. 32, pp. 605–607, 1989.
[71]
H. Zhang, S. Shang, J. E. Saal et al., “Enthalpies of formation of magnesium compounds from first-principles calculations,” Intermetallics, vol. 17, no. 11, pp. 878–885, 2009.
[72]
I. T. Sryvalin, O. A. Esin, and B. M. Lepinskikh, “Thermodynamic properties of solutions of magnesium in nickel, lead, and silicon,” Zhurnal Fizicheskoi Khimii, vol. 38, pp. 637–641, 1964.
[73]
K. Micke and H. Ipser, “Thermodynamic properties of liquid magnesium-nickel alloys,” Monatshefte fur Chemie, vol. 127, no. 1, pp. 7–13, 1996.
[74]
P. Sieben and N. G. Schmahl, “Vapor pressure and activity of magnesium in the binary alloy systems with nickel and copper and vapor pressures of some pure metals,” Giesserei, Technisch-Wissenschaftliche Beihefte, Giessereiwesen und Metallkunde, vol. 18, pp. 197–211, 1966.
[75]
P. Schubel, “The heat capacity of metals and metallic compounds between 18 and 600°,” Zeitschrift Fuer Anorganische Chemie, vol. 87, pp. 81–119, 1914.
[76]
J. F. Smith and J. L. Christian, “Thermodynamics of formation of coppermagnesium and nickelmagnesium compounds from vapor pressure measurements,” Acta Metallurgica, vol. 8, no. 4, pp. 249–255, 1960.
[77]
R. C. King and O. J. Kleppa, “A thermochemical study of some selected laves phases,” Acta Metallurgica, vol. 12, no. 1, pp. 87–97, 1964.
[78]
G. M. Lukashenko and V. N. Eremenko, “Thermodynamic properties of alloys in the system magnesium-nickel in the solid state,” Zvestiya Akademii Nauk SSSR, Metally, pp. 161–164, 1966.
[79]
A. D. Pelton, S. A. Degterov, G. Eriksson, C. Robelin, and Y. Dessureault, “The modified quasichemical model I—binary solutions,” Metallurgical and Materials Transactions B, vol. 31, no. 4, pp. 651–659, 2000.
[80]
M. Hillert, “The compound energy formalism,” Journal of Alloys and Compounds, vol. 320, no. 2, pp. 161–176, 2001.
[81]
M. Kawakami, “Equilibrium diagram of aluminum-magnesium system,” Science Reports of the Tohoku Imperial University series 1, pp. 727–747, 1936.
[82]
G. Siebel and H. Vosskuhler, “The determination of the solubility of magnesium in aluminum,” Zeitschrift für Metallkunde, vol. 31, pp. 359–362, 1939.
[83]
N. S. Kurnakov and V. I. Mikheeva, “Transformations in the middle part of the system aluminum-magnesium,” Doklady Akademii Nauk SSSR, vol. 13, pp. 209–224, 1940.
[84]
N. S. Kurnakov and V. I. Mikheeva, “Properties of solid solutions of magnesium and aluminum in the system aluminum-magnesium,” Doklady Akademii Nauk SSSR, vol. 13, pp. 201–208, 1940.
[85]
E. Butchers and W. Hume-Rothery, “Constitution of aluminum-magnesium-manganese-zinc alloys: the solidus,” Journal of the Institute of Metals, vol. 71, pp. 291–311, 1945.
[86]
W. Stiller and H. Hoffineister, “Determination of liquid-solid phase equilibria of aluminum-magnesium-zinc alloy,” Zeitschrift für Metallkdune, vol. 70, pp. 167–172, 1979.
[87]
E. Schuermann and H. J. Voss, “Melting equilibriums of magnesium-lithium-aluminum alloys. Part 4. Melting equilibriums of the aluminum-magnesium binary system,” Giessereiforschung, vol. 33, pp. 43–46, 1981.
[88]
N. C. Goel, J. R. Cahoon, and B. Mikkelsen, “An experimental technique for the rapid determination of binary phase diagrams: the Al-Mg system,” Metallurgical Transactions A, vol. 20, no. 2, pp. 197–203, 1989.
[89]
E. Schuermann and A. Fischer, “Melting equilibria in the ternary aluminum magnesium silicon system—1. Binary aluminum magnesium alloys,” Giessereiforschung, vol. 29, no. 3, pp. 107–111, 1977.
[90]
E. Schuermann and I. K. Geissler, “Phase equilibriums in the solid condition of the aluminum- rsp. the magnesium-rich corner of the ternary system of aluminum-lithium-magnesium. Part 3. Phase equilibriums in the solid condition of the binary system of aluminium-magnesium,” Giessereiforschung, vol. 32, pp. 167–170, 1980.
[91]
P. Liang, H. L. Su, P. Donnadieu, M. Harmelin, and A. Quivy, “Experimental investigation and thermodynamic calculation of the central part of the Mg-AI phase diagram,” Zeitschrift für Metallkunde, vol. 89, pp. 536–540, 1998.
[92]
D. Hanson and M. L. Gayler, “The constitution of the alloys of aluminum and magnesium,” Journal of Institute of Metals, vol. 24, pp. 201–232, 1920.
[93]
W. Hume-Rothery and G. V. Raynor, “The constitution of the mgnesium-rich alloys in the systems aluminum-magnesium, gallium-magnesium, indium-magnesium, and hallium-magnesium,” Journal of the Institute of Metals, vol. 63, pp. 201–226, 1938.
[94]
E. S. Makarkov, “Crystal structure of the gamma phase of the systems Al-Mg and Tl-Bi,” Doklady Akademii Nauk SSSR, vol. 74, pp. 935–938, 1950.
[95]
J. L. Murray, “The Al-Mg (Aluminum-Magnesium) system,” Bulletin of Alloy Phase Diagrams, vol. 3, no. 1, pp. 60–74, 1982.
[96]
P. Chartrand and A. D. Pelton, “Critical evaluation and optimization of the thermodynamic properties and phase diagrams of the Al-Mg, Al-Sr, Mg-Sr, and Al-Mg-Sr systems,” Journal of Phase Equilibria, vol. 15, no. 6, pp. 591–605, 1994.
[97]
N. Saunders, “A review and thermodynamic assessment of the aluminum-magnesium and magnesium-lithium systems,” Calphad, vol. 14, pp. 61–70, 1990.
[98]
T. Czeppe, W. Zakulski, and E. Bielańska, “Study of the thermal stability of phases in the Mg-Al system,” Journal of Phase Equilibria, vol. 24, no. 3, pp. 249–254, 2003.
[99]
Y. Zuo and Y. A. Chang, “Thermodynamic calculation of the AlMg phase diagram,” Calphad, vol. 17, no. 2, pp. 161–174, 1993.
[100]
K. Ozturk, Z.-K. Liu, and A. A. Luo, “Phase identification and microanalysis in the Mg-Al-Ca alloy system,” in Proceedings of the Magnesium Technology, pp. 195–200, March 2003.
[101]
Y. Zhong, M. Yang, and Z.-K. Liu, “Contribution of first-principles energetics to Al-Mg thermodynamic modeling,” Calphad, vol. 29, no. 4, pp. 303–311, 2005.
[102]
G. I. Batalin, V. E. Sokol'skii, and T. B. Shimanskaya, “Enthalpies of mixing liquid alloys of aluminum with magnesium and antimony,” Ukrainskii Khimicheskii Zhurnal, vol. 37, p. 397, 1971.
[103]
N. M. Tsyplakova and K. L. Strelets, “Thermodynamic properties of a magnesium-aluminum system studied by an emf method,” Zhurnal Prikladnoi Khimii, vol. 42, no. 11, pp. 2498–2503, 1969.
[104]
M. Aljarrah, Thermodynamic modeling and experimental investigation of the Mg-Al-Ca-Sr system [Ph.D. thesis], Mechanical and Industrial Engineering, Concordia University, Montreal, Canada, 2008.
[105]
O. Boudouard, “Alloys of zinc and magnesium,” Proceedings of the National Academy of Sciences, vol. 139, pp. 424–426, 1904.
[106]
G. Grube, “Alloys of magnesium with cadmium, zinc, bismuth and antimony,” The Journal of Physical Chemistry, vol. 10, pp. 587–592, 1906.
[107]
R. J. Chadwick, “The constitution of the alloys of magnesium and zinc,” Journal of the Institute of Metals, vol. 449, pp. 285–299, 1928.
[108]
S. Samson, “The crystal structure of Mg2Zn11: isomorphism between Mg2Zn11 and Mg2Cu6Al5,” Acta Chemica Scandinavica, vol. 3, pp. 835–843, 1949.
[109]
J. J. Park and L. L. Wyman, “Phase relationships in magnesium alloys,” WADC Technical Report: Astia Document AD142110 57-504, 1957.
[110]
E. D. R. W. Hume-Rothery, “The system magnesium-zinc,” Journal of the Institute of Metals, vol. 41, pp. 119–138, 1929.
[111]
F. Laves, “Zur konstitution der magnesium-zink-legierungen,” Die Naturwissenschaften, vol. 27, no. 26, pp. 454–455, 1939.
[112]
J. Clark and F. Rhins, “Central region of the Mg-Zn phase diagram,” Journal of Metals, vol. 9, pp. 425–430, 1957.
[113]
I. Higashi, N. Shiotani, M. Uda, T. Mizoguchi, and H. Katoh, “The crystal structure of Mg51Zn20,” Journal of Solid State Chemistry, vol. 36, no. 2, pp. 225–233, 1981.
[114]
J. B. Clark, L. Zabdyr, and Z. Moser, Phase Diagrams of Binary Magneisium Alloys, ASM INTERNATIONAL, Metals Park, Ohio, USA, 1988.
[115]
P. Liang, T. Tarfa, J. A. Robinson et al., “Experimental investigation and thermodynamic calculation of the Al-Mg-Zn system,” Thermochimica Acta, vol. 314, no. 1-2, pp. 87–110, 1998.
[116]
C. W. Bale, P. Chartrand, S. A. Degterov et al., FTlight Thermochemical Database, CRCT, Montreal, Canada, 2013.
[117]
F. Sommer, J. J. Lee, and B. Predel, “Calorimetric investigations of liquid alkaline earth metal alloys,” Berichte der Bunsengesellschaft für Physikalische Chemie, vol. 87, pp. 792–797, 1983.
[118]
A. V. Volkovich, A. V. Krivopushkin, and I. F. Nichkov, “Thermodynamic properties of zinc-strontium alloys,” Izv Vyssh Uchebn Zaved Tsvetn Metall, pp. 29–31, 1987.
[119]
J. M. Juneja, G. N. K. Iyengar, and K. P. Abraham, “Thermodynamic properties of liquid (magnesium + copper) alloys by vapour-pressure measurements made by a boiling-temperature method,” The Journal of Chemical Thermodynamics, vol. 18, no. 11, pp. 1025–1035, 1986.
[120]
S. P. Garg, Y. J. Bhatt, and C. V. Sundaram, “Thermodynamic study of liquid Cu-Mg alloys by vapor pressure measurements,” Metallurgical Transactions, vol. 4, no. 1, pp. 283–289, 1973.
[121]
N. G. Schmahl and P. Sieben, “Vapor pressures of magnesium in its binary alloys with copper, nickel, and lead and their thermodynamic evaluation,” Physical Chemistry of Metallic Solutions and Intermetallic Compounds, Symposium, vol. 1, pp. 268–282, 1960.
[122]
M. Hino, T. Nagasaka, and R. Takehama, “Activity measurement of the constituents in liquid Cu-Mg and Cu-Ca alloys with mass spectrometry,” Metallurgical and Materials Transactions B, vol. 31, pp. 927–935, 2000.
[123]
V. N. Eremenko, G. M. Lukashenko, and R. I. Polotskaya, “Thermodynamic properties of magnesium-copper compounds,” Izvestiya Akademii Nauk SSSR, Metally, pp. 210–212, 1968.
[124]
V. N. Eremenko and G. M. Lukashenko, “Thermodynamic properties of Mg-Pb system,” Ukrainskii Khimicheskii Zhurnal, vol. 29, pp. 896–900, 1963.
[125]
A. Steiner, E. Miller, and K. L. Komarek, “Magnesium-tin phase diagram and thermodynamic properties of liquid magnesium-tin alloys,” Transactions of Metals Society AIME, vol. 230, pp. 1361–1367, 1964.
[126]
J. M. Eldridge, E. Miller, and K. L. Komarek, Transactions of the Metals Society AIME, vol. 239, pp. 775–781, 1967.
[127]
R. A. Sharma, “Thermodynamic properties of liquid Mg+Pb and Mg+Sn Alloys by e.m.f. measurements,” The Journal of Chemical Thermodynamics, vol. 2, no. 3, pp. 373–389, 1970.
[128]
A. K. Nayak and W. Oelsen, “Determination of the heats of formation of the solid and liquid Mg- Sn alloys at 20°and 800°C respectively and the heat content of the alloys at 800°C,” Transactions of the Indian Institute of Metals, vol. 24, no. 2, pp. 66–73, 1971.
[129]
M. Morishita, K. Koyama, S. Shikata, and M. Kusumoto, “Standard gibbs energy of formation of Mg48Zh52 determined by solution calorimetry and measurement of heat Capacity from near absolute zero kelvin,” Metallurgical and Materials Transactions B, vol. 35, no. 5, pp. 891–895, 2004.
[130]
M. Morishita, H. Yamamoto, S. Shikada, M. Kusumoto, and Y. Matsumoto, “Thermodynamics of the formation of magnesium-zinc intermetallic compounds in the temperature range from absolute zero to high temperature,” Acta Materialia, vol. 54, no. 11, pp. 3151–3159, 2006.
[131]
M. Morishita, K. Koyama, S. Shikada, and M. Kusumoto, “Calorimetric study of Mg2Zn3,” Zeitschrift für Metallkunde, vol. 96, no. 1, pp. 32–37, 2005.
[132]
M. Morishita and K. Koyama, “Calorimetric study of MgZn2 and Mg2Zn11,” Zeitschrift für Metallkunde, vol. 94, no. 9, pp. 967–971, 2003.
[133]
D. A. Petrov, M. S. Mirgalovskaya, I. A. Strelnikova, and E. M. Komova, The Constitution Diagram For the Magnesium-Manganese System, vol. 1, Institute of Materials Science, Academy of Sciences of the Ukrainian SSR, 1958.
[134]
A. A. Nayeb-Hashemi and J. B. Clark, “The Mg-Mn (Magnesium-Manganese) system,” Bulletin of Alloy Phase Diagrams, vol. 6, no. 2, pp. 160–164, 1985.
[135]
J. Gr?bner, D. Mirkovic, M. Ohno, and R. Schmid-Fetzer, “Experimental investigation and thermodynamic calculation of binary Mg-Mn Phase equilibria,” Journal of Phase Equilibria and Diffusion, vol. 26, no. 3, pp. 234–239, 2005.
[136]
Y.-B. Kang, A. D. Pelton, P. Chartrand, P. Spencer, and C. D. Fuerst, “Thermodynamic database development of the Mg-Ce-Mn-Y system for Mg alloy design,” Metallurgical and Materials Transactions A, vol. 38, no. 6, pp. 1231–1243, 2007.
[137]
P. Villars and K. Cenzual, Pearaon’a Cryatal Data—Cryatal Structure Database for Inorganic Compounda (on CD-ROM), ASM International, Materials Park, Ohio, USA, 2009.
[138]
J. A. Brown and J. N. Pratt, “The thermodynamic properties of solid Al-Mg alloys,” Metallurgical Transactions, vol. 1, no. 10, pp. 2743–2750, 1970.
[139]
B. Predel and K. Huelse, “Thermodynamic properties of aluminum-magnesium alloys,” Zeitschrift für Metallkunde, vol. 69, no. 10, pp. 661–666, 1978.
[140]
H. Okamoto, “Supplemental literature review of binary phase diagrams: Cs-In, Cs-K, Cs-Rb, Eu-In, Ho-Mn, K-Rb, Li-Mg, Mg-Nd, Mg-Zn, Mn-Sm, O-Sb, and Si-Sr,” Journal of Phase Equilibria and Diffusion, vol. 34, pp. 251–263, 2013.
[141]
P. Villars and L. Calvert, “K. Pearson’s Crystal Data, Crystal Structure Database for Inorganic Compounds, CD-ROM software version 1. 3,” OH, 2009.
[142]
A. Schneider, H. Klotz, J. Stendel, and G. Strauss, “Thermochemistry of alloys,” Pure and Applied Chemistry, vol. 2, pp. 13–16, 1961.
[143]
A. Berche, C. Drescher, J. Rogez, M.-C. Record, S. Brühne, and W. Assmus, “Thermodynamic measurements in the Mg-Zn system,” Journal of Alloys and Compounds, vol. 503, no. 1, pp. 44–49, 2010.
[144]
W. Biltz and G. Hohorst, “Contributions to the systematic study of affinity. XV. The heats of formation of the compounds of metallic magnesium with metallic zinc, cadmium, aluminium and calcium,” Zeitschrift für Anorganische und Allgemeine Chemie, vol. 121, pp. 1–24, 1922.
[145]
N. Baar, “On the alloys of molybdenum with nickel, manganese with thallium, and calcium with magneisum, thallium, lead, copper, and silver,” Zeitschrift für Anorganische und Allgemeine Chemie, vol. 70, pp. 362–366, 1911.
[146]
M. W. Chase, “Heat of transition of the elements,” Bulletin of Alloy Phase Diagrams, vol. 4, pp. 123–124, 1983.
[147]
R. Paris, “Contribution on the ternary alloys,” Ministère de L’Air: Publications Scientifiques et Techniques du Ministére de L’Air, vol. 45, pp. 39–41, 1934.
[148]
J. L. Haughton, “Alloys of magnesium. Part 6—the construction of the magnesium-rich alloys of magnesium and calcium,” Journal of Institute of Metals, vol. 61, pp. 241–246, 1937.
[149]
H. Vosskühler, “The Phase diagram of magnesium-rich Mg-Ca alloys,” Zeitschrift für Metallkunde, vol. 29, pp. 236–237, 1937.
[150]
W. Klemm and F. Dinkelacker, “On the behavior of magnesium with calcium, strontium, and barium,” Zeitschrift für Anorganische und Allgemeine Chemie, vol. 255, pp. 2–12, 1947.
[151]
J. F. Smith and R. L. Smythe, “Vapor pressure measurements over calcium, magnesium and their alloys and the thermodynamics of formation of CaMg2,” Acta Metallurgica, vol. 7, no. 4, pp. 261–267, 1959.
[152]
P. Chiotti, R. W. Curtis, and P. F. Woerner, “Metal hydride reactions. II. Reaction of hydrogen with CaMG2 and CaCU5 and thermodynamic properties of the compounds,” Journal of The Less-Common Metals, vol. 7, no. 2, pp. 120–126, 1964.
[153]
J. E. Davison and J. F. Smith, “Enthalpy of formation of CaMg2,” Transactions of the Metallurgical Society of AIME, vol. 242, pp. 2045–2049, 1968.
[154]
G. J. Gartner, Application of an Adiabatic Calorimeter to the Determination of the Heats of Fusion And Heats of Formation of Several Metallic Compounds, Iowa State University, Ames, Iowa, USA, 1965.
[155]
I. N. Pyagai and A. V. Vakhobov, “Heats of formation of intermetallic compounds in the systems magnesium-calcium (strontium, barium),” Zhurnal Fizicheskoi Khimii, vol. 64, pp. 2788–2789, 1990.
[156]
Y. Zhong, K. Ozturk, J. O. Sofo, and Z.-K. Liu, “Contribution of first-principles energetics to the Ca-Mg thermodynamic modeling,” Journal of Alloys and Compounds, vol. 420, no. 1-2, pp. 98–106, 2006.
[157]
Z. Yang, J. Du, C. Hu, R. Melnik, et al., “First principles studies on the structural, elastic, electronic properties and heats of formation of Mg-AE (AE = Ca, Sr, Ba) intermetallics,” Intermetallics, vol. 32, pp. 156–161, 2013.
[158]
Y. Zhong, J. O. Sofo, A. A. Luo, and Z. Liu, “Thermodynamics modeling of the Mg-Sr and Ca-Mg-Sr systems,” Journal of Alloys and Compounds, vol. 421, pp. 172–178, 2006.
[159]
H. Nowotny, E. Wormnes, and E. Mohrnheim, “Investigation on the Al-Ca, Mg-Ca, and Mg-Zr systems,” Zeitschrift für Metallkunde, vol. 32, pp. 39–42, 1940.
[160]
E. C. Burke, “Solid solubility of calcium in magnesium,” Journal of Metals Transactions of AIME, vol. 203, pp. 285–286, 1955.
[161]
E. F. W. Bulian, “Solubility of calcium in magnesium,” Metallforschung, vol. 1, p. 70, 1946.
[162]
X. Tao, Y. Ouyang, H. Liu et al., “Phase stability of magnesium-rare earth binary systems from first-principles calculations,” Journal of Alloys and Compounds, vol. 509, no. 24, pp. 6899–6907, 2011.
[163]
K. H. J. Buschow, “Magnetic properties of MgCo2, MgNi2 and Mg2Ni,” Solid State Communications, vol. 17, no. 7, pp. 891–893, 1975.
[164]
F. Laves and H. Witte, “X-ray determination of structure of MgNi2,” Metallwirtschaft, Metallwissenschaft, Metalltechnik, vol. 14, p. 1002, 1935.
[165]
H. Okamoto, “Ce-Mg (Cerium-Magnesium),” Journal of Phase Equilibria and Diffusion, vol. 32, pp. 265–266, 2011.
[166]
R. Agarwal, J. J. Lee, H. L. Lukas, and F. Sommer, “Calorimetric measurements and thermodynamic optimization of the Ca-Mg system,” Zeitschrift für Metallkunde, vol. 86, no. 2, pp. 103–108, 1995.
[167]
B. P. Burylev, “Thermodynamic properties of calcium based alloys,” in Termodin Termokhin Konstanty Izd. Nauka, K. V. Astakhov, Ed., pp. 32–39, USSR, Moscow, Russia, 1970.
[168]
W. Biltz and H. Pieper, “Contributions to the systematic affinity principle. XXVII. The heats of formation of intermetallic compounds. IV. Cerium alloys,” Zeitschrift Für Anorganische und Allgemeine Chemie., vol. 134, pp. 13–24, 1924.
[169]
J. Pahlman and J. Smith, “Thermodynamics of formation of compounds in the Ce-Mg, Nd-Mg, Gd-Mg, Dy-Mg, Er-Mg, and Lu-Mg binary systems in the temperature range 650to 930K,” Metallurgical and Materials Transactions B, vol. 3, pp. 2423–2432, 1972.
[170]
K. Nagarajan and F. Sommer, “Calorimetric investigations of CeMg liquid alloys,” Journal of The Less-Common Metals, vol. 142, pp. 319–328, 1988.
[171]
Y. B. Kang, L. Jin, P. Chartrand, A. E. Gheribi, K. Bai, and P. Wu, “Thermodynamic evaluations and optimizations of binary Mg-light Rare Earth (La, Ce, Pr, Nd, Sm) systems,” Calphad, vol. 38, pp. 100–116, 2012.
[172]
F. Sommer, J. J. Lee, and B. Predel, “Temperaturabh?ngigkeit der mischungsenthalpien flüssiger Magnesium-Blei und Magnesium-Zinn Legierungen,” MetaUkd, vol. 71, pp. 818–821, 1980.
[173]
A. K. Nayak and W. Oelsen, “Determination of the heats of formation of the solid and liquid Mg- Sn alloys at 20° and 800°C respectively and the heat content of the alloys at 800°C,” Transactions of the Indian Institute of Metals, vol. 24, no. 2, pp. 66–73, 1971.
[174]
P. Beardmore, B. W. Howlett, Lichter, B. D, et al., “Thermodynamic properties of compounds of magnesium and group IVB elements,” Transactions of Metals Society AIME, vol. 236, pp. 102–108, 1966.
[175]
A. Borsese, G. Borzone, R. Ferro, and R. Capelli, “Heat of formation of magnesium-tin alloys,” Zeitschrift für Metallkunde, vol. 66, no. 4, pp. 226–227, 1975.
[176]
B. Dobovisek and A. Paulin, “Influence of the structure of intermetallic compounds on thermodynamic properties of metallic systems,” Rudarsko Metals of Zbornik, vol. 1, pp. 37–49, 1966.
[177]
A. A. Nayeb-Hashemi and J. B. Clark, “The Ca-Mg (calcium-magnesium) system,” Bulletin of Alloy Phase Diagrams, vol. 8, no. 1, pp. 58–65, 1987.
[178]
A. A. Nayeb-Hashemi and J. B. Clark, “The Mg-Sr (Magnesium-Strontium) system,” Bulletin of Alloy Phase Diagrams, vol. 7, no. 2, pp. 149–156, 1986.
[179]
H. Vosskuehler, “The structure of the magnesium-rich alloys of magnesium and strontium,” Metallwirtschaft, vol. 18, pp. 377–378, 1939.
[180]
J. W. Brown, The strontium-magnesium phase system [Ph.D. thesis], Syracuse University, Syracuse, NY, USA, 1973.
[181]
J. P. Ray, The strontium-magnesium equilibrium diagram [Ph.D. thesis], Syracuse University, Syracuse, NY, USA, 1947.
[182]
H. Vosskuhler, “The structure of the magnesium-rich magnesium-strontium alloys,” Metallwirtsch, Metallwiss, Metalltech, vol. 18, pp. 377–378, 1939.
[183]
E. D. Gibson and O. N. Carlson, “The yttrium-magnesium alloy system,” Transactions of the American Society For Metals, vol. 52, pp. 1084–1096, 1960.
[184]
D. Mizer and J. B. Clark, “Magnesium-rich region of the magnesium-yttrium phase diagram,” Transactions of the American Institute of Mining, Metallurgical and Petroleum Engineers, vol. 221, pp. 207–208, 1961.
[185]
Q. Ran, H. L. Lukas, G. Effenberg, and G. Petzow, “Thermodynamic optimization of the Mg-Y system,” Calphad, vol. 12, no. 4, pp. 375–381, 1988.
[186]
O. B. Fabrichnaya, H. L. Lukas, G. Effenberg, and F. Aldinger, “Thermodynamic optimization in the Mg-Y system,” Intermetallics, vol. 11, no. 11-12, pp. 1183–1188, 2003.
[187]
F. G. Meng, J. Wang, H. S. Liu, L. B. Liu, and Z. P. Jin, “Experimental investigation and thermodynamic calculation of phase relations in the Mg-Nd-Y ternary system,” Materials Science and Engineering A, vol. 454-455, pp. 266–273, 2007.
[188]
C. Guo, Z. Du, and C. Li, “A thermodynamic description of the Gd-Mg-Y system,” Calphad, vol. 31, no. 1, pp. 75–88, 2007.
[189]
Y.-B. Kang, A. D. Pelton, P. Chartrand, P. Spencer, and C. D. Fuerst, “Critical evaluation and thermodynamic optimization of the binary systems in the Mg-Ce-Mn-Y system,” Journal of Phase Equilibria and Diffusion, vol. 28, no. 4, pp. 342–354, 2007.
[190]
H. Okamoto, “Mg-Y (magnesium-yttrium),” Journal of Phase Equilibria and Diffusion, vol. 31, no. 2, p. 199, 2010.
[191]
G. Voss, “Alloys of nickel with tin, lead, thallium, bismuth, chromium, magnesium, zinc, and cadmium,” Zeitschrift für Anorganische Chemie, vol. 57, pp. 34–71, 1908.
[192]
J. L. Haughton and R. J. M. Payne, “Alloys of magnesium research. I. The constitution of the magnesium-rich alloys of magnesium and nickel,” Journal of the Institute of Metals, vol. 54, pp. 275–284, 1934.
[193]
P. Bagnoud and P. Feschotte, “Binary systems of magnesium-copper and magnesium-nickel, especially the nonstoichiometry of the MgCu2 and MgNi2 laves phases,,” Zeitschrift für Metallkunde, vol. 69, no. 2, pp. 114–120, 1978.
[194]
P. D. Merica and R. G. Waltenberg, “Malleability and metallography of nickel,” Tech. Paper National Bureau of Standards (U.S) 19, 1925.
[195]
J. S. Wollam and W. E. Wallace, “Magnetic susceptibility, heat capacity and third-law entropy of MgNi2,” Journal of Physics and Chemistry of Solids, vol. 13, no. 3-4, pp. 212–220, 1960.
[196]
K. H. Lieser and H. Witte, “The ternary systems Mg-Cu-Zn, Mg-Ni-Zn, Mg-Cu-Ni,” Zeitschrift für Metallkunde, vol. 43, pp. 396–401, 1952.
[197]
K. Schubert and K. Anderko, “Crystal structure of NiMg2, CuMg2 and AuMg3,” Zeitschrift für Metallkunde, vol. 42, pp. 321–324, 1951.
[198]
A. A. Nayeb-Hashemi and J. B. Clark, “The Mg-Ni (Magnesium-Nickel) system,” Bulletin of Alloy Phase Diagrams, vol. 6, no. 3, pp. 238–244, 1985.
[199]
M. H. G. Jacobs and P. J. Spencer, “A critical thermodynamic evaluation of the system MG-NI,” Calphad, vol. 22, no. 4, pp. 513–525, 1998.
[200]
W. Xiong, Y. Du, W.-W. Zhang, W.-H. Sun, X.-G. Lu, and F.-S. Pan, “Thermodynamic reassessment of the Cu-Mg-Ni system with brief comments on the thermodynamic modeling of the sub-systems,” Calphad, vol. 32, no. 4, pp. 675–685, 2008.
[201]
D. H. Wood and E. M. Cramer, “Phase relations in the magnesium-rich portion of the cerium-magnesium system,” Journal of The Less-Common Metals, vol. 9, no. 5, pp. 321–337, 1965.
[202]
Q. Johnson and G. Smith, “The crystal structure of Ce5Mg42,” Acta Crystallographica, vol. 22, pp. 360–365, 1967.
[203]
A. A. Nayeb-Hashemi and J. B. Clark, “The Ce-Mg (Cerium-Magnesium) system,” Journal of Phase Equilibria, vol. 9, no. 2, pp. 162–172, 1988.
[204]
A. Saccone, D. Macciò, S. Delfino, F. H. Hayes, and R. Ferro, “Mg-Ce alloys. Experimental investigation by smith thermal analysis,” Journal of Thermal Analysis and Calorimetry, vol. 66, no. 1, pp. 47–57, 2001.
[205]
X. Zhang, D. Kevorkov, and M. Pekguleryuz, “Stoichiometry study on the binary compounds in the Mg-Ce system-Part I,” Journal of Alloys and Compounds, vol. 475, no. 1-2, pp. 361–367, 2009.
[206]
H. Okamoto and T. B. Massalski, “Thermodynamically improbable phase diagrams,” Journal of Phase Equilibria, vol. 12, no. 2, pp. 148–168, 1991.
[207]
G. Cacciamani, G. Borzone, and R. Ferro, “System Ce-Mg,” in COST 507-Thermochemical Databases for Light Metal Alloys, I. Ansara, A. T. Dinsdale, and M. H. Rand, Eds., vol. 2, pp. 137–140, European Commission, 1998.
[208]
H. Zhang, Y. Wang, S. Shang, L.-Q. Chen, and Z.-K. Liu, “Thermodynamic modeling of Mg-Ca-Ce system by combining first-principles and CALPHAD method,” Journal of Alloys and Compounds, vol. 463, no. 1-2, pp. 294–301, 2008.
[209]
R. Joseph and K. A. Gschneidner, “Solid solubility of magnesium in some lanthanide metals,” Transactions of AIME, vol. 233, pp. 2063–2069, 1965.
[210]
A. Iandelli and A. Palenzona, “Atomic size of rare earths in intermetallic compounds. MX compounds of CsCl type,” Journal of the Less-Common Metals, vol. 9, no. 1, pp. 1–6, 1965.
[211]
S. Delfino, A. Saccone, and R. Ferro, “Phase relationships in the neodymium-magnesium alloy system,” Metallurgical Transactions A, vol. 21, no. 8, pp. 2109–2114, 1990.
[212]
A. A. Nayeb-Hashemi and J. B. Clark, “The Mg-Nd system (Magnesium-Neodymium),” Bulletin of Alloy Phase Diagrams, vol. 9, no. 5, pp. 618–623, 1988.
[213]
S. Gorsse, C. R. Hutchinson, B. Chevalier, and J.-F. Nie, “A thermodynamic assessment of the Mg-Nd binary system using random solution and associate models for the liquid phase,” Journal of Alloys and Compounds, vol. 392, no. 1-2, pp. 253–262, 2005.
[214]
J. R. Ogren, N. J. Magnani, and J. F. Smith, “Thermodynamics of formation of binary rare earth-magnesium phases with cesium chloride-type structures,” Transactions of the Metallurgical Society of AIME, vol. 239, pp. 766–771, 1967.
[215]
C. Guo and Z. Du, “Thermodynamic assessment of the Mg-Nd system,” Zeitschrift für Metallkunde, vol. 97, pp. 130–135, 2006.
[216]
F.-G. Meng, H.-S. Liu, L.-B. Liu, and Z.-P. Jin, “Thermodynamic optimization of Mg-Nd system,” Transactions of Nonferrous Metals Society of China (English Edition), vol. 17, no. 1, pp. 77–81, 2007.
[217]
H. Y. Qi, G. X. Huang, H. Bo, G. L. Xu, L. B. Liu, and Z. P. Jin, “Thermodynamic description of the Mg-Nd-Zn ternary system,” Journal of Alloys and Compounds, vol. 509, no. 7, pp. 3274–3281, 2011.
[218]
M. O. Boudouard, “Les Alliages de Duirre et de Magnesium (The Binary Alloys of Magnesium),” Bulletin de la Société d'Encouragement pour l'Industrie Nationale, vol. 102, p. 200, 1903.
[219]
R. Sahmen, “Alloys of copper with cobalt, iron, manganese and magnesium,” Zeitschrift für Anorganische und Allgemeine Chemie, vol. 57, pp. 1–33, 1908.
[220]
G. G. Urazov, “Alloys of copper and magnesium,” Zhurnal Russkogo Fiziko-Khimicheskogo Obschestva, vol. 39, pp. 1556–1581, 1907.
[221]
W. R. D. Jones, “Copper-magnesium alloys. IV. Equilibrium diagram,” Journal of the Institute of Metals, no. 574, p. 25, 1931.
[222]
G. Grime and W. Morris-Jones, “An x-ray investigation of the copper-magnesium alloys,” Philosophical Magazine Series, vol. 7, pp. 1113–1134, 1929.
[223]
V. G. Sederman, “Cu2Mg phase in the copper-magnesium system,” Philosophical Magazine Series, vol. 18, pp. 343–352, 1934.
[224]
M. Hansen, “Note on the magnesium-rich magnesium copper alloys,” Journal of the Institute of Metals, no. 428, p. 8, 1927.
[225]
N. I. Stepanov and I. I. Kornilov, “Solubility of copper in magnesium in the solid state,” Akademii Nauk SSSR, vol. 7, pp. 89–98, 1935.
[226]
A. A. Nayeb-Hashemi and J. B. Clark, “The Cu-Mg (Copper-Magnesium) system,” Bulletin of Alloy Phase Diagrams, vol. 5, no. 1, pp. 36–43, 1984.
[227]
C. A. Coughanowr, I. Ansara, R. Luoma, M. Hamalainen, and H. L. Lukas, “Assessment of the copper-magnesium system,” Zeitschrift für Metallkunde, vol. 82, pp. 574–581, 1991.
[228]
Y. Zuo and Y. A. Chang, “Thermodynamic calculation of magnesium-copper phase diagram,” Zeitschrift für Metallkunde, vol. 84, pp. 662–667, 1993.
[229]
G. Grube, “On the alloys of magnesium with tin and thallium,” Zeitschrift Fur Anorganische Chemie, vol. 46, pp. 76–84, 1905.
[230]
N. S. Kurnakow and N. J. Stepanow, “On the alloys of magnesium with tin and thallium,” Zeitschrift Fur Anorganische Chemie, vol. 46, pp. 177–192, 1905.
[231]
W. Hume-Rothery, “The system magnesium-tin and the compound Mg4Sn2,” Journal of the Institute of Metals, vol. 35, pp. 336–347, 1926.
[232]
G. V. Raynor, “The constitution of the magnesium-rich alloys in the systems magnesium-lead, magnesium-tin, magnesium-germanium, and magnesium-silicon,” Journal of the Institute of Metals, vol. 6, pp. 403–426, 1940.
[233]
A. K. Nayak and W. Oelsen, “Thermal analysis of Mg-Sn alloys by calorimetric measurements for determination of the liquidus curve part 1,” Transactions on Indian Institute of Metals, pp. 15–20, 1968.
[234]
A. K. Nayak and W. Oelsen, “Quatitative thermal analysis of magnesium-tin alloys by calorimetric measurement for the determination of solidus and liquidus curves,” Transactions on Indian Institute of Metals, pp. 53–58, 1969.
[235]
A. Steiner, E. Miller, and K. L. Komarek, “Magnesium-tin phase diagram and thermodynamic properties of liquid magnesium-tin alloys,” Transactions of Metals Society AIME, vol. 230, pp. 1361–1367, 1964.
[236]
P. Beardmore, B. W. Howlett, B. D. Lichter, and M. B. Bever, “Thermodynamic properties of compounds of magnesium and group IVB elements,” Transactions of Metals Society AIME, vol. 236, pp. 102–108, 1966.
[237]
C. T. Heycock and F. H. Neville, “XXVII.—The molecular weights of metals when in solution,” Journal of the Chemical Society, Transactions, vol. 57, pp. 376–393, 1890.
[238]
J. Ellmer, K. E. Hall, R. W. Kamphefner, J. T. Pfeifer, V. Stamboni, and C. D. Graham Jr., “On the liquidus in tin-rich Sn–Mg alloys,” Metallurgical Transactions, vol. 4, no. 3, pp. 889–891, 1973.
[239]
A. A. Nayeb-Hashemi and J. B. Clark, Phase Diagram of Binary Magnesium Alloys, ASM International, Materials Park, Ohio, USA, 1988.
[240]
G. Grube and H. Vosskuhler, “Electrical conductivity and binary alloys phase diagram,” Zeitschrift Electrochemistry, vol. 40, pp. 566–570, 1934.
[241]
H. Vosskuhler, “Solubility of tin in magnesium,” Metallwirtscaft, vol. 20, pp. 805–808, 1941.
[242]
N. J. Stepanow, “über die elektrische Leitf?higkeit der Metallegierungen,” Zeitschrift fur Anorganische Chemie, vol. 78, pp. 1–32, 1912.
[243]
J. A. Gann, “Treatment and structure of magnesium alloys,” Transactions of the Metals Society AIME, vol. 83, pp. 309–332, 1929.
[244]
H. Nishinura and K. Tanaka, “Age hardening of magnesium-rich magnesium-aluminum-tin alloys,” Transactions of the Institution of Mining and Metallurgy Alumni Assocication, vol. 10, pp. 343–350, 1940.
[245]
J. M. Eldridge, E. Miller, and K. L. Komarek, “Thermodynamic properties of liquid magnesium-silicon alloys, discussion of the Mg-Group IVB systems,” Transactions of the Metals Society AIME, vol. 239, pp. 775–781, 1967.
[246]
H. J. Caulfield and D. E. Hudson, “Sublimation in the intermetallic series Mg2Si, Mg2Ge, Mg2Sn and Mg2Pb,” Solid State Communications, vol. 4, no. 6, pp. 299–301, 1966.
[247]
A. K. Nayak and W. Oelsen, “Thermodynamic analysis of magnesium-tin alloys,” Transaction of the Indian Institute of Metals, vol. 24, no. 2, pp. 22–28, 1971.
[248]
V. N. Eremenko and G. M. Lukashenko, “Thermodynamic properties of Mg-Pb system,” Ukrainskii Khimicheskii Zhurnal, vol. 29, pp. 896–900, 1963.
[249]
O. Kubaschewski and A. Walter-Stuttgart, “Results of investigations of alloys by high-temperature calorimetry?” Zeitschrift Für Elektrochemie, vol. 45, pp. 732–740, 1939.
[250]
W. Biltz and W. Holverscheit, “Systematic affinity principle XLVII, the relation of mercury to a few metals,” Zeitschrift fur Anorganische Chemie, vol. 176, p. 23, 1928.
[251]
S. Ashtakala and L. M. Pidgeon, “Determination of the activities of magnesium in liquid magnesium-tin alloys by vapor pressure measurements,” Canadian Journal of Chemistry, vol. 40, pp. 718–728, 1962.
[252]
F. J. Jelinek, W. D. Shickell, and B. C. Gerstein, “Thermal study of group II-IV semiconductors, II. Heat capacity of Mg2Sn in the range 5–300?K,” Journal of Physics and Chemistry of Solids, vol. 28, no. 2, pp. 267–270, 1967.
[253]
H. Y. Chen, N. Savvides, T. Dasgupta, C. Stiewe, and E. Mueller, “Electronic and thermal transport properties of Mg2Sn crystals containing finely dispersed eutectic structures,” Physica Status Solidi A, vol. 207, no. 11, pp. 2523–2531, 2010.
[254]
J. J. Egan, “Thermodynamics of liquid magnesium alloys using CaF2 solid electrolytes,” Journal of Nuclear Materials, vol. 51, no. 1, pp. 30–35, 1974.
[255]
C. A. Eckert, J. S. Smith, R. B. Irwin, and K. R. Cox, “A chemical theory for the thermodynamics of highly-solvated liquid metal mixtures,” AIChE Journal, vol. 28, no. 2, pp. 325–332, 1982.
[256]
L. M. Pavlova and K. B. Poyarkov, “Nature of the dissociation of Mg stannide and thermodynamic properties of Mg-Sn melts,” Zhurnal Fizicheskoi Khimii, vol. 56, pp. 295–299, 1982.
[257]
I.-H. Jung and J. Kim, “Thermodynamic modeling of the Mg-Ge-Si, Mg-Ge-Sn, Mg-Pb-Si and Mg-Pb-Sn systems,” Journal of Alloys and Compounds, vol. 494, no. 1-2, pp. 137–147, 2010.
[258]
F. G. Meng, J. Wang, L. B. Liu, and Z. P. Jin, “Thermodynamic modeling of the Mg-Sn-Zn ternary system,” Journal of Alloys and Compounds, vol. 508, no. 2, pp. 570–581, 2010.
[259]
Y.-B. Kang and A. D. Pelton, “Modeling short-range ordering in liquids: the Mg-Al-Sn system,” Calphad, vol. 34, no. 2, pp. 180–188, 2010.