全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Electrochemical Behavior of TiO2 Nanoparticle Doped WO3 Thin Films

DOI: 10.1155/2014/642069

Full-Text   Cite this paper   Add to My Lib

Abstract:

Nanoparticle TiO2 doped WO3 thin films by pulsed spray pyrolysis technique have been studied on fluorine tin doped (FTO) and glass substrate. XRD shows amorphous nature for undoped and anatase phase of TiO2 having (101) plane for nanoparticle TiO2 doped WO3 thin film. SEM shows microfibrous reticulated porous network for WO3 with 600?nm fiber diameter and nanocrystalline having size 40?nm for TiO2 nanoparticle doped WO3 thin film. TiO2 nanoparticle doped WO3 thin film shows ~95% reversibility due to may be attributed to nanocrystalline nature of the film, which helpful for charge insertion and deinsertion process. The diffusion coefficient for TiO2 nanoparticle doped WO3 film is less than undoped WO3. 1. Introduction The electrochromism is key to green technology as it controls the energy of solar flux entering in building, utilizes solar energy, and increases comfort in buildings. Electrochromic materials are able to sustain reversible and persistent changes of their optical properties under the action of a voltage. The electrochromic phenomenon was discovered in tungsten oxide [1] and this material remains the most promising candidate for large-scale uses of electrochromic devices. Their potential applications include several technological areas, such as smart windows, self-dimming rear mirror, electrochromic display, and antiglare rear view mirrors of automobiles [2]. Among a variety of the transition metal oxides, tungsten oxide (WO3-x) is found to be the most efficient candidate for electrochromic applications. Granqvist [3] explains the theoretical explanation of electrochromic mechanism and reviews about different nanostructured oxides for electrochromic device and describes the mass fabrication by electrochromic foil technology. The electrochromic performance of tungsten oxide, reversible coloration under double injection of ions and electrons, strongly depends on its nature and microstructure. Nanoscale microstructure could improve the electrochromic performances of tungsten oxide thin film because it is easy for ion to intercalate and deintercalate in thin film. Mesoporous tungsten oxides exhibit superior high-rate ion-insertion performance for their short-diffusion length of lithium and hydrogen ions into electrochromic films [4]. Several researchers have attempted to employ the concept of nanotechnology to improve the drawbacks of thin-film-based electrochromic devices (ECDs) such as contrast, cycling life stability, and slow switching time between the colored and bleached states. The researcher developed transition metal oxide nanowires

References

[1]  S. K. Deb, “A novel electrophotographic system,” Applied Optics, vol. 8, supplement 1, pp. 192–195, 1969.
[2]  P. M. S. Monk, R. J. Mortimer, and D. R. Rosseinsky, Electrochromism: Fundamentals and Applications, VCH, Weinheim, Germany, 1995.
[3]  C. G. Granqvist, “Oxide electrochromics: an introduction to devices and materials,” Solar Energy Materials and Solar Cells, vol. 99, pp. 1–13, 2012.
[4]  E. O. Zayim, P. Liu, S.-H. Lee et al., “Mesoporous sol-gel WO3 thin films via poly(styrene-co-allyl-alcohol) copolymer templates,” Solid State Ionics, vol. 165, no. 1–4, pp. 65–72, 2003.
[5]  C. C. Liao, F. R. Chen, and J. J. Kai, “WO3?x nanowires based electrochromic devices,” Solar Energy Materials and Solar Cells, vol. 90, no. 7-8, pp. 1147–1155, 2006.
[6]  K. C. Cheng, F. R. Chen, and J. J. Kai, “V2O5 nanowires as a functional material for electrochromic device,” Solar Energy Materials and Solar Cells, vol. 90, no. 7-8, pp. 1156–1165, 2006.
[7]  M. Gr?tzel, “Materials science: ultrafast colour displays,” Nature, vol. 409, pp. 575–576, 2001.
[8]  A. R. Haranahalli and P. H. Holloway, “The influence of metal overlayers on electrochromic behavior of WO3 films,” Journal of Electronic Materials, vol. 10, no. 1, pp. 141–172, 1981.
[9]  K. W. Park, “Electrochromic properties of Au-WO3 nanocomposite thin-film electrode,” Electrochimica Acta, vol. 50, no. 24, pp. 4690–4693, 2005.
[10]  N. Naseri, R. Azimirad, O. Akhavan, and A. Z. Moshfegh, “Improved electrochromical properties of sol-gel WO3 thin films by doping gold nanocrystals,” Thin Solid Films, vol. 518, no. 8, pp. 2250–2257, 2010.
[11]  P. K. Shen, J. Syed-Bokhari, and A. C. C. Tseung, “Performance of electrochromic tungsten trioxide films doped with cobalt or nickel,” Journal of the Electrochemical Society, vol. 138, no. 9, pp. 2778–2783, 1991.
[12]  S. K. Deb, S. H. Lee, C. E. Tracy, J. R. Pitts, B. A. Gregg, and H. M. Branz, “Stand-alone photovoltaic-powered electrochromic smart window,” Electrochimica Acta, vol. 46, no. 13-14, pp. 2125–2130, 2001.
[13]  T. He, Y. Ma, Y. Coa, W. Yang, and J. Yoa, “Enhanced electrochromism of WO3 thin film by gold nanoparticles,” Journal of Electroanalytical Chemistry, vol. 514, no. 1-2, pp. 129–132, 2001.
[14]  P. M. Kadam, N. L. Tarwal, S. S. Mali, H. P. Deshmukh, and P. S. Patil, “Enhanced electrochromic performance of f-MWCNT-WO3 composite,” Electrochimica Acta, vol. 58, no. 1, pp. 556–561, 2011.
[15]  P. M. Kadam, N. L. Tarwal, P. S. Shinde et al., “Enhanced optical modulation due to SPR in gold nanoparticles embedded WO3 thin films,” Journal of Alloys and Compounds, vol. 509, no. 5, pp. 1729–1733, 2011.
[16]  S. V. Green, E. Pehlivan, C. G. Granqvist, and G. A. Niklasson, “Electrochromism in sputter deposited nickel-containing tungsten oxide films,” Solar Energy Materials and Solar Cells, vol. 99, pp. 339–344, 2012.
[17]  J. M. O. R. de León, D. R. Acosta, U. Pal, and L. Casta?eda, “Improving electrochromic behavior of spray pyrolised WO3 thin solid films by Mo doping,” Electrochimica Acta, vol. 56, no. 5, pp. 2599–2605, 2011.
[18]  S. R. Bathe and P. S. Patil, “Titanium doping effects in electrochromic pulsed spray pyrolysed WO3 thin films,” Solid State Ionics, vol. 179, no. 9-10, pp. 314–323, 2008.
[19]  S. R. Bathe and P. S. Patil, “Influence of Nb doping on the electrochromic properties of WO3 films,” Journal of Physics D, vol. 40, no. 23, pp. 7423–7431, 2007.
[20]  S. R. Bathe and P. S. Patil, “Electrochromic characteristics of fibrous reticulated WO3 thin films prepared by pulsed spray pyrolysis technique,” Solar Energy Materials and Solar Cells, vol. 91, no. 12, pp. 1097–1101, 2007.
[21]  M. Deepa, A. K. Srivastava, and S. A. Agnihotry, “Influence of annealing on electrochromic performance of template assisted, electrochemically grown, nanostructured assembly of tungsten oxide,” Acta Materialia, vol. 54, no. 17, pp. 4583–4595, 2006.
[22]  A. J. Bard and L. R. Faulkner, Electrochemical Methods, Wiley-Interscience, New York, NY, USA, 1980.
[23]  F. O. Arntz, R. B. Goldner, B. Morel, T. E. Hass, and K. K. Wong, “Near-infrared reflectance modulation with electrochromic crystalline WO3 films deposited on ambient temperature glass substrates by an oxygen ion-assisted technique,” Journal of Applied Physics, vol. 67, no. 6, pp. 3177–3179, 1990.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133