|
An Approach to Evaluate the Clothing Creative Design with Dual Hesitant Fuzzy InformationDOI: 10.1155/2014/352619 Abstract: The problem of evaluating the clothing creative design with dual hesitant fuzzy information is the multiple attribute decision making problem. In this paper, we have utilized dual hesitant fuzzy hybrid average (DHFHA) operator to develop the model to solve the multiple attribute decision making problems for evaluating the clothing creative design. Finally, a practical example for evaluating the clothing creative design is given to verify the developed approach. 1. Introduction In the context of innovation-driven reformation and development of fashion industry in China, it becomes the most essential issue to enhance the ability of independent R&D and creative design level for Chinese local fashion brands. In quite a long period, fashion is considered to be determined by fashion designers [1, 2]. However, fashion is hereby considered to be formed according to certain social background, instead of being determined by certain people’s subjective minds. So fashion could be generated by precise analysis from objective factors. Now in the context of fast fashion, fashion design does not merely rely on the designers’ creativity, but all kinds of modern information technology are applied in the process of fashion design [3–5]. According to the characteristics of the fashion data warehouse system, an overall structure composed of fashion data dictionary, fashion data sources, fashion data management, fashion data mining, and the front-end decision support is formed. The proposed concept of Fashion Data Dictionary (FDD), including Fashion Color Data Dictionary, Fashion Material Data Dictionary, Fashion Accessory Data Dictionary, Fashion Pattern Data Dictionary, Fashion Technique Data Dictionary, Fashion Style Data Dictionary, and Fashion Look Data Dictionary, is formed, in order that all kinds of fashion data from different sources are unified in format. Each data dictionary regulates its data type, level, content, and standard presentation [6, 7]. Sources of fashion data extraction are fashion clothing, social background, and art works. Fashion clothing data sources include fashion shows, fashion market, fashion brand advertisement, target consumer, fashion e-shop, and fashion and fabric exhibition. Social background data sources include politics, economy, environment, science and technology, sports, and lifestyle. Art works data sources include TV drama, art, design, music, performance art, and literature [8]. The fashion data management is defined including fashion data extraction, naming method, conversion rules, and loading standard, so that the fashion data
|