全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Computer-Based Diagnostic Expert Systems in Rheumatology: Where Do We Stand in 2014?

DOI: 10.1155/2014/672714

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background. The early detection of rheumatic diseases and the treatment to target have become of utmost importance to control the disease and improve its prognosis. However, establishing a diagnosis in early stages is challenging as many diseases initially present with similar symptoms and signs. Expert systems are computer programs designed to support the human decision making and have been developed in almost every field of medicine. Methods. This review focuses on the developments in the field of rheumatology to give a comprehensive insight. Medline, Embase, and Cochrane Library were searched. Results. Reports of 25 expert systems with different design and field of application were found. The performance of 19 of the identified expert systems was evaluated. The proportion of correctly diagnosed cases was between 43.1 and 99.9%. Sensitivity and specificity ranged from 62 to 100 and 88 to 98%, respectively. Conclusions. Promising diagnostic expert systems with moderate to excellent performance were identified. The validation process was in general underappreciated. None of the systems, however, seemed to have succeeded in daily practice. This review identifies optimal characteristics to increase the survival rate of expert systems and may serve as valuable information for future developments in the field. 1. Introduction Rheumatologic diseases manifest themselves in varying combinations of symptoms and signs, particularly at early stages, and therefore make differential diagnosis a challenge, especially for nonrheumatologists including general practitioners. Since diagnosis at an early stage and adequate treatment improve prognosis, assistance in establishing diagnosis is desirable. Given the substantial progress in computer science in the last years, the idea of computers taking the role of diagnostic support is not far-fetched. Software applications have affected decision processes in clinical routine, for example, in controlling depth of anesthesia [1] or in detecting drug interactions [2]. Software tools to support physicians in the diagnostic process have been developed in almost every field of medicine. A widely utilized type is the so-called expert system, defined as artificial intelligence program designed to provide expert-level solutions to complex problems [3]. Figures 1 and 2 give an overview of the concept. Figure 1: Common methodologies for expert systems. Figure 2: Typical structure of a knowledge-based expert system. Based on Buchanan [ 3], the user interface allows the nonexpert to enter the symptoms and findings [ 3] and presents the

References

[1]  G. N. Schmidt, J. Müller, and P. Bischoff, “Measurement of the depth of anaesthesia,” Anaesthesist, vol. 57, no. 1, pp. 9–30, 2008.
[2]  K. A. McKibbon, C. Lokker, S. M. Handler et al., “The effectiveness of integrated health information technologies across the phases of medication management: a systematic review of randomized controlled trials,” Journal of the American Medical Informatics Association, vol. 19, no. 1, pp. 22–30, 2012.
[3]  B. G. Buchanan, Rule Based Expert Systems: The Mycin Experiments of the Stanford Heuristic Programming Project, Addison-Wesley Longman, Reading, Mass, USA, 1984.
[4]  B. Pandey and R. B. Mishra, “Knowledge and intelligent computing system in medicine,” Computers in Biology and Medicine, vol. 39, no. 3, pp. 215–230, 2009.
[5]  T. M. Lehmann, Handbuch der Medizinischen Informatik, Hanser, München, Germany, 2002.
[6]  M. L. Astion, D. A. Bloch, and M. H. Wener, “Neural networks as expert systems in rheumatic disease diagnosis: artificial intelligence or intelligent artifice?” Journal of Rheumatology, vol. 20, no. 9, pp. 1465–1468, 1993.
[7]  G. Gottlob, T. Frühwirth, W. Horn, and G. Fleischanderl, Expertensysteme, Springer, Wien, Austria, 1990.
[8]  K. P. Adlassnig, G. Kolarz, and W. Scheithauer, “Present state of the medical expert system CADIAG-2,” Methods of Information in Medicine, vol. 24, no. 1, pp. 13–20, 1985.
[9]  M. Sadatsafavi, A. Moayyeri, H. Bahrami, and A. Soltani, “The value of Bayes theorem in the interpretation of subjective diagnostic findings: what can we learn from agreement studies?” Medical Decision Making, vol. 27, no. 6, pp. 735–743, 2007.
[10]  A. N. Ramesh, C. Kambhampati, J. R. T. Monson, and P. J. Drew, “Artificial intelligence in medicine,” Annals of the Royal College of Surgeons of England, vol. 86, no. 5, pp. 334–338, 2004.
[11]  R. S. Ledley and L. B. Lusted, “Reasoning foundations of medical diagnosis; symbolic logic, probability, and value theory aid our understanding of how physicians reason,” Science, vol. 130, no. 3366, pp. 9–21, 1959.
[12]  R. A. Miller, H. E. Pople Jr., and J. D. Myers, “Internist-I, an experimental computer-based diagnostic consultant for general internal medicine,” The New England Journal of Medicine, vol. 307, no. 8, pp. 468–476, 1982.
[13]  R. A. Miller, M. A. McNeil, S. M. Challinor, F. E. Masarie Jr., and J. D. Myers, “The internist-1/quick medical reference project—status report,” Western Journal of Medicine, vol. 145, no. 6, pp. 816–822, 1986.
[14]  S. Liao, “Expert system methodologies and applications—a decade review from 1995 to 2004,” Expert Systems with Applications, vol. 28, no. 1, pp. 93–103, 2005.
[15]  H. J. Bernelot Moens and J. K. van der Korst, “Computer-assisted diagnosis of rheumatic disorders,” Seminars in Arthritis and Rheumatism, vol. 21, no. 3, pp. 156–169, 1991.
[16]  D. Moher, A. Liberati, J. Tetzlaff, D. G. Altman, and P. Group, “Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement,” OpenMed, vol. 3, no. 3, pp. e123–e130, 2009.
[17]  J. D. McCrea, M. R. E. McCredie, D. M. G. McSherry, and P. M. Brooks, “A controlled evaluation of diagnostic criteria in the development of a rheumatology expert system,” British Journal of Rheumatology, vol. 28, no. 1, pp. 13–17, 1989.
[18]  S. E. Gabriel, C. S. Crowson, and W. M. O'Fallon, “A mathematical model that improves the validity of osteoarthritis diagnoses obtained from a computerized diagnostic database,” Journal of Clinical Epidemiology, vol. 49, no. 9, pp. 1025–1029, 1996.
[19]  G. P. Balint and W. W. Buchanan, “Diagnosis of rheumatic disease: a plea for contemplation of the future,” British Journal of Rheumatology, vol. 25, no. 4, pp. 399–401, 1986.
[20]  B. Montgomery, “Computers in medicine,” The Journal of the American Medical Association, vol. 240, no. 24, pp. 2613–2617, 1978.
[21]  N. Thumb, “Clinical diagnostic strategy in rheumatology,” Zeitschrift fur die Gesamte Innere Medizin und Ihre Grenzgebiete, vol. 42, no. 15, pp. 431–434, 1987.
[22]  M. H. Wener, “Multiplex, megaplex, index, and complex: the present and future of laboratory diagnostics in rheumatology,” Arthritis Research & Therapy, vol. 13, no. 6, article 134, 2011.
[23]  C. L. Romano, D. Romano, C. Bonora, A. Degrate, and G. Mineo, “Combined diagnostic tool for joint prosthesis infections,” Le Infezioni in Medicina: Rivista Periodica di Eziologia, Epidemiologia, Diagnostica, Clinica e Terapia delle Patologie Infettive, vol. 17, no. 3, pp. 141–150, 2009.
[24]  E. W. Watt and A. A. T. Bui, “Evaluation of a dynamic bayesian belief network to predict osteoarthritic knee pain using data from the osteoarthritis initiative,” AMIA—Annual Symposium proceedings / AMIA Symposium. AMIA Symposium, pp. 788–792, 2008.
[25]  D. A. Provenzano, G. J. Fanciullo, R. N. Jamison, G. J. McHugo, and J. C. Baird, “Computer assessment and diagnostic classification of chronic pain patients,” Pain Medicine, vol. 8, no. 3, supplement, pp. S167–S175, 2007.
[26]  S. R. Binder, M. C. Genovese, J. T. Merrill, R. I. Morris, and A. L. Metzger, “Computer-assisted pattern recognition of autoantibody results,” Clinical and Diagnostic Laboratory Immunology, vol. 12, no. 12, pp. 1353–1357, 2005.
[27]  H. Liu, J. O. Harker, A. L. Wong et al., “Case finding for population-based studies of rheumatoid arthritis: comparison of patient self-reported ACR criteria-based algorithms to physician-implicit review for diagnosis of rheumatoid arthritis,” Seminars in Arthritis and Rheumatism, vol. 33, no. 5, pp. 302–310, 2004.
[28]  C. K. Lim, K. M. Yew, K. H. Ng, and B. J. J. Abdullah, “A proposed hierarchical fuzzy inference system for the diagnosis of arthritic diseases,” Australasian Physical and Engineering Sciences in Medicine, vol. 25, no. 3, pp. 144–150, 2002.
[29]  H. Leitich, H. P. Kiener, G. Kolarz, C. Schuh, W. Graninger, and K. P. Adlassnig, “A prospective evaluation of the medical consultation system CADIAG-II/RHEUMA in a rheumatological outpatient clinic,” Methods of Information in Medicine, vol. 40, no. 3, pp. 213–220, 2001.
[30]  K. Boegl, F. Kainberger, K. P. Adlassnig et al., “New approaches to computer-assisted diagnosis of rheumatologic diseases,” Radiologe, vol. 35, no. 9, pp. 604–610, 1995.
[31]  G. Kolarz and K. Adlassnig, “Problems in establishing the medical expert systems CADIAG-1 and CADIAG-2 in rheumatology,” Journal of Medical Systems, vol. 10, no. 4, pp. 395–405, 1986.
[32]  H. Leitich, K.-P. Adlassnig, and G. Kolarz, “Development and evaluation of fuzzy criteria for the diagnosis of rheumatoid arthritis,” Methods of Information in Medicine, vol. 35, no. 4-5, pp. 334–342, 1996.
[33]  K. P. Adlassing, G. Kolarz, W. Scheithauer, H. Effenberger, and G. Grabner, “CADIAG: approaches to computer-assisted medical diagnosis,” Computers in Biology and Medicine, vol. 15, no. 5, pp. 315–335, 1985.
[34]  C. Hernandez, J. J. Sancho, M. A. Belmonte, C. Sierra, and F. Sanz, “Validation of the medical expert system RENOIR,” Computers and Biomedical Research, vol. 27, no. 6, pp. 456–471, 1994.
[35]  M. Martín-Baranera, J. J. Sancho, and F. Sanz, “Controlling for chance agreement in the validation of medical expert systems with no gold standard: PNEUMON-IA and RENOIR revisited,” Computers and Biomedical Research, vol. 33, no. 6, pp. 380–397, 2000.
[36]  L. Godo, R. López de Mántaras, J. Puyol-Gruart, and C. Sierra, “Renoir, Pneumon-IA and Terap-IA: three medical applications based on fuzzy logic,” Artificial Intelligence in Medicine, vol. 21, no. 1–3, pp. 153–162, 2001.
[37]  G. Kolarz, K. P. Adlassnig, and K. B?gl, “RHEUMexpert: a documentation and expert system for rheumatic diseases,” Wiener Medizinische Wochenschrift, vol. 149, no. 19-20, pp. 572–574, 1999.
[38]  B. Zupan and S. D?eroski, “Acquiring background knowledge for machine learning using function decomposition: a case study in rheumatology,” Artificial Intelligence in Medicine, vol. 14, no. 1-2, pp. 101–117, 1998.
[39]  H. J. Bernelot Moens, “Validation of the AI/RHEUM knowledge base with data from consecutive rheumatological outpatients,” Methods of Information in Medicine, vol. 31, no. 3, pp. 175–181, 1992.
[40]  J. F. Porter, L. C. Kingsland III, D. A. B. Lindberg et al., “The AI-RHEUM knowledge-based computer consultant system in rheumatology. Performance in the diagnosis of 59 connective tissue disease patients from Japan,” Arthritis & Rheumatism, vol. 31, no. 2, pp. 219–226, 1988.
[41]  R. S. Kaplan, “AI/Consult: a prototype directed history system based upon the AI/Rheum knowledge base,” Proceedings of the Annual Symposium on Computer Application [sic] in Medical Care. Symposium on Computer Applications in Medical Care, pp. 639–643, 1991.
[42]  B. H. Athreya, M. L. Cheh, and L. C. Kingsland III, “Computer-assisted diagnosis of pediatric rheumatic diseases,” Pediatrics, vol. 102, no. 4, article E48, 1998.
[43]  L. C. Kingsland III, D. A. B. Lindberg, and G. C. Sharp, “AI/RHEUM—a consultant system for rheumatology,” Journal of Medical Systems, vol. 7, no. 3, pp. 221–227, 1983.
[44]  S. Dzeroski and N. Lavrac, “Rule induction and instance-based learning applied in medical diagnosis,” Technology and Health Care, vol. 4, no. 2, pp. 203–221, 1996.
[45]  I. Heller, A. Isakov, S. Blinder-Weiner, and M. Topilsky, “Bayesian classification of vasculitis: a simulation study,” Methods of Information in Medicine, vol. 34, no. 3, pp. 259–265, 1995.
[46]  M. L. Astion, M. H. Wener, R. G. Thomas, G. G. Hunder, and D. A. Bloch, “Application of neural networks to the classification of giant cell arteritis,” Arthritis and Rheumatism, vol. 37, no. 5, pp. 760–770, 1994.
[47]  J. M. Barreto and F. M. de Azevedo, “Connectionist expert systems as medical decision aid,” Artificial Intelligence in Medicine, vol. 5, no. 6, pp. 515–523, 1993.
[48]  G. Widmer, W. Horn, and B. Nagele, “Automatic knowledge base refinement: learning from examples and deep knowledge in rheumatology,” Artificial Intelligence in Medicine, vol. 5, no. 3, pp. 225–243, 1993.
[49]  S. Schewe and M. A. Schreiber, “Stepwise development of a clinical expert system in rheumatology,” Clinical Investigator, vol. 71, no. 2, pp. 139–144, 1993.
[50]  H. J. Bernelot Moens and J. K. van der Korst, “Comparison of rheumatological diagnoses by a Bayesian program and by physicians,” Methods of Information in Medicine, vol. 30, no. 3, pp. 187–193, 1991.
[51]  H. J. Bernelot Moens and J. K. van der Korst, “Development and validation of a computer program using Bayes's theorem to support diagnosis of rheumatic disorders,” Annals of the Rheumatic Diseases, vol. 51, no. 2, pp. 266–271, 1992.
[52]  H. J. Bernelot Moens, A. J. Hishberg, and A. A. M. C. Claessens, “Data-source effects on the sensitivities and specificities of clinical features in the diagnosis of rheumatoid arthritis: the relevance of multiple sources of knowledge for a decision-support system,” Medical Decision Making, vol. 12, no. 4, pp. 250–258, 1992.
[53]  D. Sereni, A. Venot, M. Forest et al., “Clinical and computer-aided diagnosis of temporal arteritis,” European Journal of Internal Medicine, vol. 2, no. 2, pp. 81–90, 1991.
[54]  A. S. Rigby, “Development of a scoring system to assist in the diagnosis of rheumatoid arthritis,” Methods of Information in Medicine, vol. 30, no. 1, pp. 23–29, 1991.
[55]  S. Schewe, P. Herzer, and K. Kruger, “Prospective application of an expert system for the medical history of joint pain,” Klinische Wochenschrift, vol. 68, no. 9, pp. 466–471, 1990.
[56]  R. M. Prust, “Diagnostic knowledge base construction,” Medical Informatics, vol. 11, no. 1, pp. 83–88, 1986.
[57]  G. Gini and M. Gini, “A serial model for computer assisted medical diagnosis,” International Journal of Bio-Medical Computing, vol. 11, no. 2, pp. 99–113, 1980.
[58]  C. Dostál and J. Nikl, “Application of the information theory in automatic data processing and diagnosis of rheumatic diseases,” Zeitschrift fur die Gesamte Innere Medizin und Ihre Grenzgebiete, vol. 27, no. 9, pp. 395–398, 1972.
[59]  J. F. Fries, “Experience counting in sequential computer diagnosis,” Archives of Internal Medicine, vol. 126, no. 4, pp. 647–651, 1970.
[60]  C. Spreckelsen, K. Spitzer, and W. Honekamp, “Present situation and prospect of medical knowledge based systems in German-speaking countries,” Methods of Information in Medicine, vol. 51, no. 4, pp. 281–294, 2012.
[61]  K. Kawamoto, C. A. Houlihan, E. A. Balas, and D. F. Lobach, “Improving clinical practice using clinical decision support systems: a systematic review of trials to identify features critical to success,” The British Medical Journal, vol. 330, no. 7494, pp. 765–768, 2005.
[62]  H. Tang and J. H. K. Ng, “Googling for a diagnosis—use of Google as a diagnostic aid: Internet based study,” British Medical Journal, vol. 333, no. 7579, pp. 1143–1145, 2006.
[63]  C. Lombardi, E. Griffiths, B. McLeod, A. Caviglia, and M. Penagos, “Search engine as a diagnostic tool in difficult immunological and allergologic cases: is Google useful?” Internal Medicine Journal, vol. 39, no. 7, pp. 459–464, 2009.
[64]  D. S. Gibson, M. E. Rooney, S. Finnegan et al., “Biomarkers in rheumatology, now and in the future,” Rheumatology, vol. 51, no. 3, Article ID ker358, pp. 423–433, 2012.
[65]  W. H. Robinson, T. M. Lindstrom, R. K. Cheung, and J. Sokolove, “Mechanistic biomarkers for clinical decision making in rheumatic diseases,” Nature Reviews Rheumatology, vol. 9, no. 5, pp. 267–276, 2013.
[66]  K. D. Mandl and I. S. Kohane, “Escaping the EHR trap—the future of health IT,” The New England Journal of Medicine, vol. 366, no. 24, pp. 2240–2242, 2012.
[67]  C. Alves, J. J. Luime, D. Van Zeben et al., “Diagnostic performance of the ACR/EULAR 2010 criteria for rheumatoid arthritis and two diagnostic algorithms in an early arthritis clinic (REACH),” Annals of the Rheumatic Diseases, vol. 70, no. 9, pp. 1645–1647, 2011.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133