IgG4 reactions marked by infiltration of IgG4-positive plasma cells in affected organs occur in cancer patients and in patients with IgG4-related diseases. Extrahepatic cholangiocarcinomas including gall bladder cancer are often accompanied by significant IgG4 reactions; these reactions show a negative correlation with CD8-positive cytotoxic T cells, suggesting that the evasion of immune surveillance is associated with cytotoxic T cells. The regulatory cytokine IL-10 may induce IgG4-positive plasma cell differentiation or promote B cell switching to IgG4 in the presence of IL-4. Cholangiocarcinoma cells may function as nonprofessional antigen presenting cells that indirectly induce IgG4 reactions via the IL-10-producing cells and/or these may act as Foxp3-positive and IL-10-producing cells that directly induce IgG4 reactions. Moreover, IgG4-related disease is a high-risk factor for cancer development; IgG4-related sclerosing cholangitis (IgG4-SC) cases associated with cholangiocarcinoma or its precursor lesion biliary intraepithelial neoplasia (BilIN) have been reported. IgG4-positive cell infiltration is an important finding of IgG4-SC but is not a histological hallmark of IgG4-SC. For the diagnosis of IgG4-SC, its differentiation from cholangiocarcinoma remains important. 1. Introduction Inflammatory biliary diseases with periductal fibrosis are categorized as sclerosing cholangitis. In addition to the prototype of sclerosing cholangitis, primary sclerosing cholangitis (PSC), IgG4-related sclerosing cholangitis (IgG4-SC) is categorized as sclerosing cholangitis. Although IgG4-SC is characterized by the infiltration of numerous IgG4-positive cells in the wall of bile ducts, this IgG4 reaction is also found in PSC, hepatolithiasis, and cholangiocarcinoma. In particular, the differentiation between IgG4-SC and cholangiocarcinoma is an important clinical issue. Moreover, carcinogenesis in IgG4-related diseases has been noted [1] and a few cholangiocarcinoma cases arising from IgG4-SC have also been reported [2, 3]. In this review, we focus on the IgG4 reaction in cholangiocarcinoma and the pathological IgG4-SC-induced carcinogenic features of cholangiocarcinoma. 2. IgG4-Related Diseases and Clinicopathological Issues IgG4 is a minor immunoglobulin subtype that does not activate complement and comprises only 3–6% of all circulating IgG in adults [4]. Elevated serum IgG4 levels and abundant IgG4-positive plasma cell infiltration in affected organs mark IgG4-related diseases [4–6]. The physiological and pathological significance of IgG4 remains unknown in
References
[1]
M. Shiokawa, Y. Kodama, K. Yoshimura et al., “Risk of cancer in patients with autoimmune pancreatitis,” American Journal of Gastroenterology, vol. 108, no. 4, pp. 610–617, 2013.
[2]
B. K. Straub, I. Esposito, D. Gotthardt et al., “IgG4-associated cholangitis with cholangiocarcinoma,” Virchows Archiv, vol. 458, no. 6, pp. 761–765, 2011.
[3]
C. H. Oh, J. G. Kim, J. W. Kim et al., “Early bile duct cancer in a background of sclerosing cholangitis and autoimmune pancreatitis,” Internal Medicine, vol. 47, no. 23, pp. 2025–2028, 2008.
[4]
H. Hamano, S. Kawa, A. Horiuchi et al., “High serum IgG4 concentrations in patients with sclerosing pancreatitis,” The New England Journal of Medicine, vol. 344, no. 10, pp. 732–738, 2001.
[5]
H. Hamano, S. Kawa, Y. Ochi et al., “Hydronephrosis associated with retroperitoneal fibrosis and sclerosing pancreatitis,” The Lancet, vol. 359, no. 9315, pp. 1403–1404, 2002.
[6]
Y. Zen and Y. Nakanuma, “IgG4-related disease: a cross-sectional study of 114 cases,” American Journal of Surgical Pathology, vol. 34, no. 12, pp. 1812–1819, 2010.
[7]
M. Koyabu, K. Uchida, N. Fukata et al., “Primary sclerosing cholangitis with elevated serum IgG4 levels and/or infiltration of abundant IgG4-positive plasma cells,” Journal of Gastroenterology, vol. 45, no. 1, pp. 122–129, 2010.
[8]
Y. Zen, A. Quaglia, and B. Portmann, “Immunoglobulin G4-positive plasma cell infiltration in explanted livers for primary sclerosing cholangitis,” Histopathology, vol. 58, no. 3, pp. 414–422, 2011.
[9]
A. Raina, A. M. Krasinskas, J. B. Greer et al., “Serum immunoglobulin G fraction 4 levels in pancreatic cancer: elevations not associated with autoimmune pancreatitis,” Archives of Pathology & Laboratory Medicine, vol. 132, no. 1, pp. 48–53, 2008.
[10]
A. Ghazale, S. T. Chari, T. C. Smyrk et al., “Value of serum IgG4 in the diagnosis of autoimmune pancreatitis and in distinguishing it from pancreatic cancer,” American Journal of Gastroenterology, vol. 102, no. 8, pp. 1646–1653, 2007.
[11]
T. Kamisawa, P. Y. Chen, Y. Tu et al., “Pancreatic cancer with a high serum IgG4 concentration,” World Journal of Gastroenterology, vol. 12, no. 38, pp. 6225–6228, 2006.
[12]
D. Dhall, A. A. Suriawinata, L. H. Tang, J. Shia, and D. S. Klimstra, “Use of immunohistochemistry for IgG4 in the distinction of autoimmune pancreatitis from peritumoral pancreatitis,” Human Pathology, vol. 41, no. 5, pp. 643–652, 2010.
[13]
M. D. Leise, T. C. Smyrk, N. Takahashi, S. R. Sweetser, S. S. Vege, and S. T. Chari, “IgG4-associated cholecystitis: another clue in the diagnosis of autoimmune pancreatitis,” Digestive Diseases and Sciences, vol. 56, no. 5, pp. 1290–1294, 2011.
[14]
S. C. Abraham, M. Cruz-Correa, P. Argani, E. E. Furth, R. H. Hruban, and J. K. Boitnott, “Lymphoplasmacytic chronic cholecystitis and biliary tract disease in patients with lymphoplasmacytic sclerosing pancreatitis,” The American Journal of Surgical Pathology, vol. 27, no. 4, pp. 441–451, 2003.
[15]
T. Kamisawa, Y. Tu, H. Nakajima et al., “Sclerosing cholecystitis associated with autoimmune pancreatitis,” World Journal of Gastroenterology, vol. 12, no. 23, pp. 3736–3739, 2006.
[16]
H. Ohara, K. Okazaki, H. Tsubouchi et al., “Clinical diagnostic criteria of IgG4-related sclerosing cholangitis 2012,” Journal of Hepato-Biliary-Pancreatic Sciences, vol. 19, no. 5, pp. 536–542, 2012.
[17]
Y. J. Resheq, A. Quaas, D. von Renteln, C. Schramm, A. W. Lohse, and S. Lüth, “Infiltration of peritumoural but tumour-free parenchyma with IgG4-positive plasma cells in hilar cholangiocarcinoma and pancreatic adenocarcinoma,” Digestive and Liver Disease, vol. 45, no. 10, pp. 859–865, 2013.
[18]
U. Motosugi, T. Ichikawa, H. Yamaguchi et al., “Small invasive ductal adenocarcinoma of the pancreas associated with lymphoplasmacytic sclerosing pancreatitis: case Report,” Pathology International, vol. 59, no. 10, pp. 744–747, 2009.
[19]
N. Hiraoka, K. Onozato, T. Kosuge, and S. Hirohashi, “Prevalence of FOXP3+ regulatory T cells increases during the progression of pancreatic ductal adenocarcinoma and its premalignant lesions,” Clinical Cancer Research, vol. 12, no. 18, pp. 5423–5434, 2006.
[20]
H. Suzuki, N. Chikazawa, T. Tasaka et al., “Intratumoral CD8+ T/FOXP3+ cell ratio is a predictive marker for survival in patients with colorectal cancer,” Cancer Immunology, Immunotherapy, vol. 59, no. 5, pp. 653–661, 2010.
[21]
H. Miyoshi, K. Uchida, T. Taniguchi et al., “Circulating na?ve and CD4+CD25high regulatory T cells in patients with autoimmune pancreatitis,” Pancreas, vol. 36, no. 2, pp. 133–140, 2008.
[22]
M. Koyabu, K. Uchida, H. Miyoshi et al., “Analysis of regulatory T cells and IgG4-positive plasma cells among patients of IgG4-related sclerosing cholangitis and autoimmune liver diseases,” Journal of Gastroenterology, vol. 45, no. 7, pp. 732–741, 2010.
[23]
T. Kusuda, K. Uchida, H. Miyoshi et al., “Involvement of inducible costimulator- and interleukin 10-positive regulatory T cells in the development of IgG4-related autoimmune pancreatitis,” Pancreas, vol. 40, no. 7, pp. 1120–1130, 2011.
[24]
Y. Fukui, K. Uchida, K. Sumimoto et al., “The similarity of Type 1 autoimmune pancreatitis to pancreatic ductal adenocarcinoma with significant IgG4-positive plasma cell infiltration,” Journal of Gastroenterology, vol. 48, no. 6, pp. 751–761, 2013.
[25]
Y. Zen, T. Fujii, K. Harada et al., “Th2 and regulatory immune reactions are increased in immunoglobin G4-related sclerosing pancreatitis and cholangitis,” Hepatology, vol. 45, no. 6, pp. 1538–1546, 2007.
[26]
K. Isse, K. Harada, Y. Sato, and Y. Nakanuma, “Characterization of biliary intra-epithelial lymphocytes at different anatomical levels of intrahepatic bile ducts under normal and pathological conditions: numbers of CD4+CD28- intra-epithelial lymphocytes are increased in primary biliary cirrhosis,” Pathology International, vol. 56, no. 1, pp. 17–24, 2006.
[27]
Y. Kimura, K. Harada, and Y. Nakanuma, “Pathologic significance of immunoglobulin G4-positive plasma cells in extrahepatic cholangiocarcinoma,” Human Pathology, vol. 43, no. 12, pp. 2149–2156, 2012.
[28]
P. Jeannin, S. Lecoanet, Y. Delneste, J. F. Gauchat, and J. Y. Bonnefoy, “IgE versus IgG4 production can be differentially regulated by IL-10,” Journal of Immunology, vol. 160, no. 7, pp. 3555–3561, 1998.
[29]
D. S. Robinson, M. Larché, and S. R. Durham, “Tregs and allergic disease,” The Journal of Clinical Investigation, vol. 114, no. 10, pp. 1389–1397, 2004.
[30]
S. Hinz, L. Pagerols-Raluy, H. Oberg et al., “Foxp3 expression in pancreatic carcinoma cells as a novel mechanism of immune evasion in cancer,” Cancer Research, vol. 67, no. 17, pp. 8344–8350, 2007.
[31]
W. H. Wang, C. L. Jiang, W. Yan et al., “FOXP3 expression and clinical characteristics of hepatocellular carcinoma,” World Journal of Gastroenterology, vol. 16, no. 43, pp. 5502–5509, 2010.
[32]
L. M. Ebert, B. S. Tan, J. Browning et al., “The regulatory T cell-associated transcription factor FoxP3 is expressed by tumor cells,” Cancer Research, vol. 68, no. 8, pp. 3001–3009, 2008.
[33]
V. Karanikas, M. Speletas, M. Zamanakou et al., “Foxp3 expression in human cancer cells,” Journal of Translational Medicine, vol. 6, article 19, 2008.
[34]
M. Battaglia, C. Gianfrani, S. Gregori, and M. G. Roncarolo, “IL-10-producing T regulatory type 1 cells and oral tolerance,” Annals of the New York Academy of Sciences, vol. 1029, pp. 142–153, 2004.
[35]
S. Shimoda, F. Ishikawa, T. Kamihira et al., “Autoreactive T-cell responses in primary biliary cirrhosis are proinflammatory whereas those of controls are regulatory,” Gastroenterology, vol. 131, no. 2, pp. 606–618, 2006.
[36]
V. Bal, A. McIndoe, G. Denton et al., “Antigen presentation by keratinocytes induces tolerance in human T cells,” European Journal of Immunology, vol. 20, no. 9, pp. 1893–1897, 1990.
[37]
J. Markmann, D. Lo, A. Naji, R. D. Palmiter, R. L. Brinster, and E. Heber-Katz, “Antigen presenting function of class II MHC expressing pancreatic beta cells,” Nature, vol. 336, no. 6198, pp. 476–479, 1988.
[38]
G. Lombardi, K. Arnold, J. Uren et al., “Antigen presentation by interferon- -treated thyroid follicular cells inhibits interleukin-2 (IL-2) and supports IL-4 production by B7-dependent human T cells,” European Journal of Immunology, vol. 27, no. 1, pp. 62–71, 1997.
[39]
H. Inoue, H. Miyatani, Y. Sawada, and Y. Yoshida, “A case of pancreas cancer with autoimmune pancreatitis,” Pancreas, vol. 33, no. 2, pp. 208–209, 2006.
[40]
M. Loos, I. Esposito, D. M. Hedderich et al., “Autoimmune pancreatitis complicated by carcinoma of the pancreatobiliary system: a case report and review of the literature,” Pancreas, vol. 40, no. 1, pp. 151–154, 2011.
[41]
R. Pezzilli, S. Vecchiarelli, M. C. Di Marco et al., “Pancreatic ductal adenocarcinoma associated with autoimmune pancreatitis,” Case Reports in Gastroenterology, vol. 5, no. 2, pp. 378–385, 2011.
[42]
M. Yamamoto, H. Takahashi, T. Tabeya et al., “Risk of malignancies in IgG4-related disease,” Modern Rheumatology, vol. 22, no. 3, pp. 414–418, 2012.
[43]
K. Hirano, M. Tada, N. Sasahira et al., “Incidence of malignancies in patients with IgG4-related disease,” Internal Medicine, vol. 53, no. 3, pp. 171–176, 2014.
[44]
F. Mendes and K. D. Lindor, “Primary sclerosing cholangitis: overview and update,” Nature Reviews Gastroenterology and Hepatology, vol. 7, no. 11, pp. 611–619, 2010.
[45]
A. Tanaka, S. Tazuma, K. Okazaki, H. Tsubouchi, K. Inui, and H. Takikawa, “Nationwide survey for primary sclerosing cholangitis and IgG4-related sclerosing cholangitis in Japan,” Journal of Hepato-Biliary-Pancreatic Sciences, vol. 21, no. 1, pp. 43–50, 2014.
[46]
H. Ohtani, H. Ishida, Y. Ito, T. Yamaguchi, and M. Koizumi, “Autoimmune pancreatitis and biliary intraepithelial neoplasia of the common bile duct: a case with diagnostically challenging but pathogenetically significant association,” Pathology International, vol. 61, no. 8, pp. 481–485, 2011.
[47]
Y. Nakanuma, M.-P. Curado, S. Franceschi et al., “Intrahepatic cholangiocarcinoma,” in WHO Classification of Tumors of the Digestive System; World Health Organization of Tumors, F. T. Bosman, F. Carneiro, R. H. Hruban, and N. D. Theise, Eds., pp. 217–224, IARC, Lyon, France, 2010.
[48]
M. Takeuchi, Y. Sato, K. Ohno et al., “T helper 2 and regulatory T-cell cytokine production by mast cells: a key factor in the pathogenesis of IgG4-related disease,” Modern Pathology, 2014.
[49]
T. Tanikawa, C. M. Wilke, I. Kryczek et al., “Interleukin-10 ablation promotes tumor development, growth, and metastasis,” Cancer Research, vol. 72, no. 2, pp. 420–429, 2012.
[50]
K. Harada and Y. Nakanuma, “Pathological differences between IgG4-related sclerosing cholangitis with and without autoimmune pancreatitis (the 102nd USCAP annual meeting abstracts),” Modern Pathology, vol. 26, supplement 2, p. 403A, 2013.
[51]
H. Hamano, S. Kawa, T. Uehara et al., “Immunoglobulin G4-related lymphoplasmacytic sclerosing cholangitis that mimics infiltrating hilar cholangiocarcinoma: part of a spectrum of autoimmune pancreatitis?” Gastrointestinal Endoscopy, vol. 62, no. 1, pp. 152–157, 2005.
[52]
H. Umehara, K. Okazaki, Y. Masaki et al., “Comprehensive diagnostic criteria for IgG4-related disease (IgG4-RD), 2011,” Modern Rheumatology, vol. 22, no. 1, pp. 21–30, 2012.
[53]
A. Ghazale, S. T. Chari, L. Zhang et al., “Immunoglobulin G4-associated cholangitis: clinical profile and response to therapy,” Gastroenterology, vol. 134, no. 3, pp. 706–715, 2008.
[54]
S. T. Chari, T. C. Smyrk, M. J. Levy et al., “Diagnosis of autoimmune pancreatitis: the mayo clinic experience,” Clinical Gastroenterology and Hepatology, vol. 4, no. 8, pp. 1010–1016, 2006.
[55]
H. Kawakami, Y. Zen, M. Kuwatani et al., “IgG4-related sclerosing cholangitis and autoimmune pancreatitis: histological assessment of biopsies from Vater's ampulla and the bile duct,” Journal of Gastroenterology and Hepatology, vol. 25, no. 10, pp. 1648–1655, 2010.
[56]
T. Umemura, Y. Zen, H. Hamano, S. Kawa, Y. Nakanuma, and K. Kiyosawa, “Immunoglobin G4-hepatopathy: association of immunoglobin G4-bearing plasma cells in liver with autoimmune pancreatitis,” Hepatology, vol. 46, no. 2, pp. 463–471, 2007.