Tools to accurately estimate tree volume and biomass are scarce for most forest types in East Africa, including Tanzania. Based on a sample of 142 trees and 57 shrubs from a 6,065 ha area of dry miombo woodland in Iringa rural district in Tanzania, regression models were developed for volume and biomass of three important species, Brachystegia spiciformis Benth. ( ), Combretum molle G. Don ( ), and Dalbergia arbutifolia Baker ( ) separately, and for broader samples of trees (28 species, ), shrubs (16 species, ), and trees and shrubs combined (44 species, ). Applied independent variables were log-transformed diameter, height, and wood basic density, and in each case a range of different models were tested. The general tendency among the final models is that the fit improved when height and wood basic density were included. Also the precision and accuracy of the predictions tended to increase from general to species-specific models. Except for a few volume and biomass models developed for shrubs, all models had values of 96–99%. Thus, the models appear robust and should be applicable to forests with similar site conditions, species, and diameter ranges. 1. Introduction Standing volume and aboveground biomass (AGB) are the two main measures of forest stocking that are typically considered within the framework of sustainable forest management and for carbon accounting purposes [1, 2]. Accurate estimation of tree volume and forest biomass is not only crucial for assessing expected yields from commercial and subsistence harvesting. It is also important for carbon storage assessment in relation to global climate change mitigation measures [3, 4]. For this purpose, forest biomass can be applied to estimate carbon stocks and carbon fluxes when measured repeatedly, thus providing means for estimating the amount of carbon dioxide released into or removed from the atmosphere. However, direct measurement of volume and AGB is time consuming, costly, and usually destructive by nature. Therefore, the general practice is to estimate volume and AGB from tree dendrometric characteristics such as diameter and height, using established, general, or site-specific allometric equations [1, 3, 5, 6]. The selection of an appropriate allometric equation is a key element in the accurate estimation of forest yield and stand productivity as well as carbon stocks and changes in stocks [7, 8]. Unfortunately, such equations often produce biased results when applied outside the forest area or region where they were developed. If high accuracy is required for quantification and
References
[1]
S. Brown, “Estimating biomass and biomass change of tropical forests: a primer,” FAO Forest Paper 134, 1997.
[2]
T. J. Brandeis, M. Delaney, B. R. Parresol, and L. Royer, “Development of equations for predicting Puerto Rican subtropical dry forest biomass and volume,” Forest Ecology and Management, vol. 233, no. 1, pp. 133–142, 2006.
[3]
B. Husch, T. W. Beers, and J. A. Kershaw, Forest Mensuration, John Wiley & Sons, Hoboken, NJ, USA, 4th edition, 2003.
[4]
P. H. Freer-Smith, M. S. J. Broadmeadow, and J. M. Lynch, Forestry & Climate Change, Forestry Research, Farnham, UK, 2007.
[5]
A. de Gier, “A new approach to woody biomass assessment in woodlands and shrublands,” in GeoinFormatics for Tropical Ecosystems, P. S. Roy, Ed., pp. 161–198, Bishen Singh Mahendra Pal Singh, Dehradun, India, 2003.
[6]
J. Navar, “measurement and assessment methods of forest aboveground biomass: a literature review and the challenges ahead,” in Biomass, M. Momba and F. Bux, Eds., pp. 27–64, publisher Janeza Trdine, Rijeka, Croatia, 2010, http://www.sciyo.com.
[7]
M. Williams, C. M. Ryan, R. M. Rees, E. Sambane, J. Fernando, and J. Grace, “Carbon sequestration and biodiversity of re-growing miombo woodlands in Mozambique,” Forest Ecology and Management, vol. 254, no. 2, pp. 145–155, 2008.
[8]
M. De Ridder, W. Hubau, J. van den Bulcke, J. van Acker, and H. Beeckman, “The potential of plantations of Terminalia superba engl. & diels for wood and biomass production (Mayombe Forest, Democratic Republic of Congo),” Annals of Forest Science, vol. 67, no. 5, pp. 501–512, 2010.
[9]
S. Brown, “Measuring, monitoring, and verification of carbon benefits for forest-based projects,” Philosophical Transactions of the Royal Society A, vol. 360, no. 1797, pp. 1669–1683, 2002.
[10]
M. Henry, N. Picard, C. Trotta et al., “Estimating tree biomass of sub-Saharan African forests: a review of available allometric equations,” Silva Fennica, vol. 45, no. 3, pp. 477–569, 2011.
[11]
O. Hofstad, “Review of biomass and volume functions for individual trees and shrubs in Southeast Africa,” Journal of Tropical Forest Science, vol. 17, no. 1, pp. 151–162, 2005.
[12]
C. M. Ryan, M. Williams, and J. Grace, “Above- and belowground carbon stocks in a miombo woodland landscape of mozambique,” Biotropica, vol. 43, no. 4, pp. 423–432, 2011.
[13]
R. E. Malimbwi, B. Solberg, and E. Luoga, “Estimation of biomass and volume in miombo woodland at Kitulangalo Forest Reserve, Tanzania,” Journal of Tropical Forest Science, vol. 7, no. 2, pp. 230–242, 1994.
[14]
S. A. O. Chamshama, A. G. Mugasha, and E. Zahabu, “Stand biomass and volume estimation for Miombo woodlands at Kitulangalo, Morogoro, Tanzania,” Southern African Forestry Journal, no. 200, pp. 59–69, 2004.
[15]
W. A. Mugasha, T. Eid, O. M. Bollandsas et al., “Allometric models for prediction of above- and below ground biomass of trees in the miombo woodlands of Tanzania,” Forest Ecology and Management, vol. 310, pp. 87–101, 2013.
[16]
N. Calender, “Miombo woodland—distribution, ecology and patterns of land use,” Working Paper 16, Swedish University of agricultural Sciences, Uppsala, Sweden, 1981.
[17]
E. N. Chidumayo, “Estimating fuelwood production and yield in regrowth dry miombo woodland in Zambia,” Forest Ecology and Management, vol. 24, no. 1, pp. 59–66, 1988.
[18]
D. D. Shirima, P. K. T. Munishi, S. L. Lewis et al., “Carbon storage, structure and composition of miombo woodlands in Tanzania's Eastern Arc Mountains,” African Journal of Ecology, vol. 49, no. 3, pp. 332–342, 2011.
[19]
Q. M. Ketterings, R. Coe, M. Van Noordwijk, Y. Ambagau', and C. A. Palm, “Reducing uncertainty in the use of allometric biomass equations for predicting above-ground tree biomass in mixed secondary forests,” Forest Ecology and Management, vol. 146, no. 1–3, pp. 199–209, 2001.
[20]
H. K. Gibbs, S. Brown, J. O. Niles, and J. A. Foley, “Monitoring and estimating tropical forest carbon stocks: making REDD a reality,” Environmental Research Letters, vol. 2, no. 4, Article ID 045023, 2007.
[21]
M. A. Pinard and F. E. Putz, “Retaining forest biomass by reducing logging damage,” Biotropica, vol. 28, pp. 278–295, 1996.
[22]
A. B. Temu, “Double sampling with aerial photographs in estimating wood volume in miombo woodlands,” Division of Forestry, University of Dar-es-Salaam, Morogoro, Tanzania, vol. 22, pp. 1–17, 1981.
[23]
R. E. Malimbwi and A. B. Temu, “Volume functions for Pterocarpus angolensis and Julbernadia globiflora,” Journal of Tanzania Association of Foresters, vol. 1, pp. 49–53, 1984.
[24]
P. Abbot, J. Lowore, and M. Werren, “Models for the estimation of single tree volume in four Miombo woodland types,” Forest Ecology and Management, vol. 97, pp. 25–37, 1997.
[25]
J. Chave, C. Andalo, S. Brown et al., “Tree allometry and improved estimation of carbon stocks and balance in tropical forests,” Oecologia, vol. 145, no. 1, pp. 87–99, 2005.
[26]
M. Henry, A. Besnard, W. A. Asante et al., “Wood density, phytomass variations within and among trees, and allometric equations in a tropical rainforest of Africa,” Forest Ecology and Management, vol. 260, no. 8, pp. 1375–1388, 2010.
[27]
LIFE and SUA, “Participatory Forest Management: inception report,” Sokoine University of Agriculture (SUA), Faculty of Forestry and Nature Conservation (FFNC), University of Copenhagen, Forest & Landscape Denmark (FLD), Cambridge University, Cambridge, UK, University of Manchester, Manchester, UK, 2007.
[28]
H. T. Valentine, L. M. Tritton, and G. M. Furnival, “Subsampling trees for biomass, volume, or mineral content,” Forest Science, vol. 30, no. 3, pp. 673–681, 1984.
[29]
P. O. Olesen, “The water displacement method. A fast and accurate method of determining the green volume of wood samples,” Forest Tree Improvement, vol. 3, pp. 1–23, 1971.
[30]
E. E. Mwakalukwa, H. Meilby, and T. Treue, “Wood basic densities of dry miombo woodland trees and shrubs in Tanzania,” In press.
[31]
A. N. Djomo, A. Ibrahima, J. Saborowski, and G. Gravenhorst, “Allometric equations for biomass estimations in Cameroon and pan moist tropical equations including biomass data from Africa,” Forest Ecology and Management, vol. 260, no. 10, pp. 1873–1885, 2010.
[32]
D. G. Sprugel, “Correcting for bias in log- transformed allometric equations,” Ecology, vol. 64, no. 1, pp. 209–210, 1983.
[33]
J. Návar, “Biomass component equations for Latin American species and groups of species,” Annals of Forest Science, vol. 66, no. 2, p. 208, 2009.