Land use and land cover (LULC) change through inappropriate agricultural practices and high human and livestock population pressure have led to severe land degradation in the Ethiopian highlands. This has led to further degradation such as biodiversity loss, deforestation, and soil erosion. The study examined woody vegetation diversity status and the impact of drivers of change across different LULC types and agroecological zones in Gilgel Tekeze catchment, northern Ethiopian highlands. LULC dynamics were assessed using GIS techniques on 1976, 1986, and 2008 satellite images. Vegetation data were collected from 135 sample plots (20?m × 20?m) from five LULC types, namely, forest, shrub-bush, grazing, settlement, and cultivated land, in the three agroecological zones; Kolla, Weyna-Dega, and Dega. Differences in vegetation structure and composition and their relationship to agroecological zones were tested using two-way ANOVA and PCA technique. The results show that vegetation structure and composition significantly differed across all LULC types in different agroecological zones particularly in sapling density, tree height, and shrub height and in each agroecological zone between forest land, shrub-bush land, and settlement area. Overall, Weyna-Dega agroecological zone and the shrub-bush land had more structural and compositional diversity than the other agroecological zones and LULC types. 1. Introduction The Ethiopian highlands are subjected to important land degradation. Several studies have shown that there were significant land use and land cover changes in the Ethiopian highlands during the second half of the 20th century [1–6]. Most of these studies pointed out that rugged topography, inappropriate agricultural practices, and high human and livestock population pressure have been the main facilitators for the land degradation processes in the highlands [7–9]. Following the pressure on natural resources, the land use and land cover types are changing so rapidly. Around 19th century, about 40% of the land mass of Ethiopia was under forest cover but this figure had gone below 3% before two decades [10]. A study by Tekle and Hedlund [5] reported that open areas and settlements have increased at the expense of shrub land and forests in South Wello of north central highlands. Bewket [2] noted the problem of downstream sedimentation caused by upstream degradation, resulting from land use and land cover changes in the Chemoga watershed, north western highlands, and this has led to extensive flooding and damage on important agricultural lands. Serious
References
[1]
S. Abate, Land Use Dynamics, Soil Degradation and Potential for Sustainable Use in Metu Area, Illubabur Region, Ethiopia, University of Berne, Berne, Switzerland, 1994.
[2]
W. Bewket, Towards Integrated Watershed Management in Highland Ethiopia: The Chemoga Watershed Case Study, Wageningen University, 2003.
[3]
E. Feoli, L. G. Vuerich, and Z. Woldu, “Processes of environmental degradation and opportunities for rehabilitation in Adwa, Northern Ethiopia,” Landscape Ecology, vol. 17, no. 4, pp. 315–325, 2002.
[4]
S. Kidanu, Using Eucalyptus for Soil & Water Conservation on the Highland Vertisols of Ethiopia, Wageningen University and Research Centre, Wageningen, The Netherlands, 2004.
[5]
K. Tekle and L. Hedlund, “Land cover changes between 1958 and 1986 in Kalu District, Southern Wello, Ethiopia,” Mountain Research and Development, vol. 20, no. 1, pp. 42–51, 2000.
[6]
G. Zeleke and H. Hurni, “Implications of land use and land cover dynamics for mountain resource degradation in the Northwestern Ethiopian highlands,” Mountain Research and Development, vol. 21, no. 2, pp. 184–191, 2001.
[7]
P. Dubale, “Soil and water resources and degradation factors affecting productivity in Ethiopian highland agro-ecosystems,” Northeast African Studies, vol. 8, no. 1, pp. 27–52, 2001.
[8]
H. Hurni, “Land degradation, famines and resource scenarios in Ethiopia,” in World Soil Erosion and Conservation, D. Pimentel, Ed., pp. 27–62, Cambridge University Press, Cambridge, UK, 1993.
[9]
B. Shiferaw and S. T. Holden, “Resource degradation and adoption of land conservation technologies in the Ethiopian Highlands: a case study in Andit Tid, North Shewa,” Agricultural Economics, vol. 18, no. 3, pp. 233–247, 1998.
TFAP, Tigray Forestry Action Plan (TFAP), TFAP, Mekelle, Ethiopia, 1996.
[12]
Z. Bahru, “The forests of wallo in Historical perspective: with a focus on the Yagof State forest,” in Proceedings of the 1997 Conference on Environmental and Development, pp. 12–14, Debre Zeit, Ethiopia, 1997.
[13]
R. Aerts, J. Nyssen, and M. Haile, “Think note, on the difference between, “exclosures” and, “enclosures” in ecology and the environment,” Arid Environments, vol. 73, pp. 762–763, 2009.
[14]
D. T. Asefa, G. Oba, R. B. Weladji, and J. E. Colman, “An assessment of restoration of biodiversity in degraded high mountain grazing lands in northern Ethiopia,” Land Degradation and Development, vol. 14, no. 1, pp. 25–38, 2003.
[15]
D. Teketay, “The impact of clearing and conversion of dry Afromontane forests into arable land on the composition and density of soil seed banks,” Acta Oecologica, vol. 18, no. 5, pp. 557–573, 1997.
[16]
D. Teketay, “Forestry research in Ethiopia: past, present and future,” in Proceedings of the National Conference on Forest Resources of Ethiopia: Status, Challenges and Opportunities, Addis Ababa, Ethiopia, 2002.
[17]
R. Aerts, Dispersal and recruitment of Olea europaea ssp cuspidata in degraded Afromontae savanna: implications for forest restoration in the highlands of northern Ethiopia [Ph.D. thesis], Katholieke Universiteit Leuven, Leuven, Belgium, 2006.
[18]
FAO/ISRIC, Soil and Terrain Digital Database for Eastern Africa (1:1000000 Million Scale), Food and Agriculture Organization of the United Nation, Rome, Italy, 1998.
[19]
FAO, “Ethiopian geomorphology and soils (1:1, 000, 000 scales),” Assistance to land use planning, Addis Ababa, Ethiopia, 1984.
[20]
H. Hurni, Agro-Ecological Belts of Ethiopia: Explanatory Notes on Three Maps at a Scale of: 1, 000, 000. Research Report, Soil Conservation Research Program (Ethiopia), Centre for Development and Environment, University of Bern, 1998.
[21]
B. Tegene, “Land use/land cover changes in the Derekolli catchment of the south Wollo Zone of Amhara Region, Ethiopia,” Eastern Africa Social Science Research Review, vol. 18, no. 1, pp. 1–20, 2002.
[22]
ERDAS, ERDAS Field Guide, ERDAS, Atlanta, Ga, USA, 1999.
[23]
B. R. Bottomley, Mapping Rural Land Use & Land Cover Change in Carroll County, Arkansas Utilizing Multi-Temporal Landsat Thematic Mapper Satellite Imagery, University of Arkansas, 1998.
[24]
A. P. Gautam, E. L. Webb, G. P. Shivakoti, and M. A. Zoebisch, “Land use dynamics and landscape change pattern in a mountain watershed in Nepal,” Agriculture, Ecosystems and Environment, vol. 99, pp. 83–96, 2003.
[25]
E. Gandiwa and S. Kativu, “Influence of fire frequency on Colophospermum mopane and Combretum apiculatum woodland structure and composition in northern Gonarezhou National Park, Zimbabwe,” Koedoe, vol. 51, no. 1, 13 pages, 2009.
[26]
S. Edwards, M. Tadesse, and I. Hedberg, Flora of Ethiopia and Eritrea. Volume 2, part 2, The National Herbarium, Addis Ababa, Ethiopia, 1995.
[27]
S. Edwards, M. Tadesse, and I. Hedberg, Flora of Ethiopia and Eritrea. Volume 3, The National Herbarium, Addis Ababa, Ethiopia, 1989.
[28]
B. Azene, Useful Trees and Shrubs for Ethiopia: Identification, Propagation and Management for Agricultural and Pastoral Communities, RSCU/SIDA, 1993.
[29]
J. H. McDonald, Handbook of Biological Statistics, Sparky House, Baltimore, Md, USA, 2nd edition, 2009.
[30]
J. A. Ludwig and J. F. Reynolds, Statistical Ecology: A Primer on Methods and Computing, John Wiley & Sons, New York, NY, USA, 1988.
[31]
SPSS, ‘SPSS for Windows’ Release 6. 1., SPSS, Chicago, Ill, USA, 1994.
[32]
H. W?ien, “Woody plant cover and farming compound distribution on the Mafud escarpment, Ethiopia. An aerial photo interpretation of changes 1957–1986,” Working Paper on Ethiopian Development 9, Centre for Environment and Development Unit, SMU, University of Trondheim, Trondheim, Norway.
[33]
D. Crummey, “Deforestation in W?llo: process or illusion?” Journal of Ethiopian, vol. 31, no. 1, pp. 1–41, 1998.
[34]
G. Zeleke, “Landscape dynamics and soil erosion process modelling in the north-western ethiopian highlands,” African Studies Series Global Change Biology, vol. 10, pp. 452–472, 2000.
[35]
D. Teketay, “Seedling populations and regeneration of woody species in dry Afromontane forests of Ethiopia,” Forest Ecology and Management, vol. 98, no. 2, pp. 149–165, 1997.
[36]
T. Bekele, “Plant Population Dynamics of Dodonaea angustifolia and Olea europaea ssp. cuspidata in Dry Afromontane Forests of Ethiopia,” Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 559. Acta Universitatis Upsaliensis, Uppsala, Sweden, 2000.
[37]
D. Teketay, “The impact of clearing and conversion of dry Afromontane forests into arable land on the composition and density of soil seed banks,” Acta Oecologica, vol. 18, no. 5, pp. 557–573, 1997.
[38]
K. A. Brown, S. Spector, and W. Wu, “Multi-scale analysis of species introductions: combining landscape and demographic models to improve management decisions about non-native species,” Journal of Applied Ecology, vol. 45, no. 6, pp. 1639–1648, 2008.
[39]
B. Kidane and A. Tesfaye, “Agroforestry practices and tree planting constraints and opportunities in Sekota district of Amahera regional State,” in The Challenges of DryLand Forest Rehabilitation in Ethiopia, B. Muys, K. Gebrehiwot, and S. Bruneel, Eds., vol. 1, pp. 1817–3322, Journal of the Dry Lands Indexed by African Journals Online, 2006.
[40]
G. Semegne, Determinants of Land use Land cover dynamics in northern Ethiopia High lands. Quantitative study of the bella-welleh Watershed (Sekota) [M.S. thesis], Ethiopia, 2006.