The flavonoid apigenin was isolated from aerial part of P. oleracea L. The dried sample of plant was powdered and subjected to soxhlet extractor by adding 80?mL of ethanol?:?water (70?:?30). The extract was centrifuged at 11000?rpm for 30?min; supernatant was taken for further use. The fraction was concentrated and subjected to PTLC. The value of isolated apigenin was calculated (0.82). Purified material was also subjected to its IR spectra, LC-MS, NMR, and HPLC for structural elucidation. The apigenin so-obtained was subjected to antibacterial activity on five pathogenic bacterial strains like Pseudomonas aeruginosa, Salmonella typhimurium, Proteus mirabilis, Klebsiella pneumoniae and Enterobacter aerogenes; among all the bacterial strains, Salmonella typhimurium and Proteus mirabilis have shown maximum diameter of inhibition zone for flavonoid and remaining bacterial strains have shown moderate diameter of inhibition zone when compared with control values and , respectively. The minimum inhibitory concentration (MIC) of the flavonoid isolated from P. oleracea L. was tested at the concentration ranging from undiluted sample to 10?mg per mL of concentration. The minimum inhibition concentration (MIC) for the flavonoid for all tested bacterial strains was found to be >4?mg per mL. Hence, the apigenin has antibacterial property and can be used to develop antibacterial drugs. 1. Introduction Plants have potent biochemical components which are phytomedicine. Plant based natural constituents can be derived from any part of the plant like bark, leaves, flowers, roots, fruits, seeds, and so forth, and used as medicine by the man since the time immemorial [1]. The beneficial medicinal effects of plant materials are typically the result of combinations of secondary products present in the plant. The medicinal values of plants are unique to particular plant species or groups and are consistent with this concept as the combination of secondary products in a particular plant is taxonomically distinct [2]. Flavonoids are group of about 4000 naturally occurring polyphenol compounds, found universally in all the plants [3]. These are primarily recognized as the pigments responsible for the colors of leaves, especially in autumn. Flavonoids are widely distributed in fruits, vegetables, nuts, seeds, herbs, spices, stems, and flowers as well as tea and red wine. They are usually subdivided according to their substituents present in flavanols (kaempferol, quercetin), anthocyanins, flavones, flavonones, and chalcones. These flavonoids display a remarkable array of
References
[1]
M. C. Gordon and J. N. David, “Natural product drug discovery in the next millennium,” Pharmaceutical Biology, vol. 39, pp. 8–17, 2001.
[2]
M. Wink, “Introduction: biochemistry, role and biotechnology of secondary products,” in Biochemistry of Secondary Product Metabolism, M. Wink, Ed., pp. 1–16, CRC Press, Boca Ratom, Fla, USA, 1999.
[3]
J. B. Harborne, “Nature, distribution and function of plant flavonoids,” Progress in Clinical and Biological Research, vol. 213, pp. 15–24, 1986.
[4]
E. Middleton and C. Kandaswami, “The impact of plant flavonoids on mammalian biology: implications for immunity, inflammation and cancer, in the flavonoids,” in Advances in Research Science, I. R. Harborne, Ed., pp. 619–645, Chapman and Hall, London, UK, 1993.
[5]
B. Winkel-Shirley, “Biosynthesis of flavonoids and effects of stress,” Current Opinion in Plant Biology, vol. 5, no. 3, pp. 218–223, 2002.
[6]
K. Springob and K. Saito, “Metabolic engineering of plant secondary metabolism: promising approach to the production of pharmaceuticals,” Science and Culture, vol. 68, pp. 76–85, 2002.
[7]
O. O. Aboaba, S. I. Smith, and F. O. Olude, “Antibacterial effect of edible plant extract on Escherichia coli 0157, H7, part,” Pakistan Journal of Nutrition, vol. 5, no. 4, pp. 325–327, 2006.
[8]
J. Davies, “Inactivation of antibiotics and the dissemination of resistance genes,” Science, vol. 264, no. 5157, pp. 375–382, 1994.
[9]
I. Ahmad, Z. Mehmood, and F. Mohammad, “Screening of some Indian medicinal plants for their antimicrobial properties,” Journal of Ethnopharmacology, vol. 62, no. 2, pp. 183–193, 1998.
[10]
G. Banerjee and A. Mukherjee, “Antibacterial activity of a common weed, Portulaca oleracea L,” Geobios, vol. 30, pp. 143–144, 2003.
[11]
H. Zhu, Y. Wang, Y. Liu, Y. Xia, and T. Tang, “Analysis of flavonoids in Portulaca oleracea L. by UV-vis spectrophotometry with comparative study on different extraction technologies,” Food Analytical Methods, vol. 3, no. 2, pp. 90–97, 2010.
[12]
A. Sofowara, Medicinal Plants and Traditional Medicine in Africa, Spectrum Books, Ibadan, Nigeria, 1993.
[13]
J. B. Harbone, Phytochemical Methods, pp. 49–188, Chapman and Hall, London, UK, 1973.
[14]
D. Sinisa, C. Milorad, and A. Salameh, “The extraction of apigenin and luteolinfrom the sage Salvia officinalis L. from Jordan,” The Scientific Journal Factauniversities, Series: Working and Living Environmental Protection, vol. 1, no. 5, pp. 87–93, 2000.
[15]
B. Liu, Z. Ning, J. Goo, and K. Xu, “Preparing apigenin from leaves of Adinandranitida,” Food Technology and Biotechnology, vol. 46, no. 1, pp. 111–115, 2008.
[16]
A. L. Barry, The Antimicrobial Suseptabalitytest: Principale and Practices, Lea and Febiger, Philadelphia, Pa, USA, 1976.
[17]
C. D. Hufford and A. M. Clark, “Discovery and development of new drugs for systemic opportunistic infection,” in Studyies in Natural Products Chemistry, A.-U. Rahman, Ed., pp. 421–452, Elsevier, 1988.
[18]
N. S. Weerakkody, N. Caffin, M. S. Turner, and G. A. Dykes, “In vitro antimicrobial activity of less-utilized spice and herb extracts against selected food-borne bacteria,” Food Control, vol. 21, no. 10, pp. 1408–1414, 2010.
[19]
J. B. Harborne, “Plant phenolic,” in Secondary Plant Products, E. A. Bell and B. V. Charlewood, Eds., p. 320, Springer, Berlin, Germany, 1980.
[20]
E. B. Smith, Prospective in Phytochemistry, J. B. Harborne and T. Swain, Eds., Academic Press, London, UK, 1969.
[21]
M. L. Harsh, T. N. Nag, and S. Jain, “Arid zone plants of Rajasthan a source of Antimicrobials,” Communication in Physiological Ecology, vol. 8, pp. 129–131, 1983.
[22]
A. Ulubelen, T. J. Mabry, G. Dellamonica, and J. Chopin, “Flavonoids from Passiflora palmeri,” Journal of Natural Products, vol. 47, no. 2, pp. 384–385, 1984.
[23]
A. Goswami and A. Reddi, “Antimicrobial activity of flavonoids of medicinallyimportant plant Cassia angustifolia in vivo and in vitro,” Journal of Phytological Research, vol. 17, pp. 179–181, 2004.
[24]
S. Saxena, R. Sharma, S. Rajore, and A. Batra, “Isolation and identification of flavonoid, “Vitexin” from Jatrophacurcas L,” Journal of Plant Sciences Research, vol. 21, pp. 116–117, 2005.
[25]
J. Nazaruk and J. Gudej, “Apigenin glycosides from the flowers of Bellis perennis L,” Acta Poloniae Pharmaceutica—Drug Research, vol. 57, no. 2, pp. 129–130, 2000.
[26]
C. Engelmann, E. Blot, Y. Panis et al., “Apigenin—strong cytostatic and anti-angiogenic action in vitro contrasted by lack of efficacy in vivo,” Phytomedicine, vol. 9, no. 6, pp. 489–495, 2002.
[27]
O. Ighodaro, A. S. Macdonald, and A. O. Oludare, “Phytotoxic and anti-microbial activities of flavonoids in Ocimum gratissimum,” Life Science Journal, vol. 7, no. 3, pp. 45–48, 2010.
[28]
G. G. F. Nascimento, J. Locatelli, P. C. Freitas, and G. L. Silva, “Antibacterial activity of plant extracts and phytochemicals on antibiotic-resistant bacteria,” Brazilian Journal of Microbiology, vol. 31, no. 4, pp. 247–256, 2000.
[29]
J. Parekh and S. Chanda, “Antibacterial and phytochemical studies on twelve species of Indian medicinal plants,” African Journal of Biomedical Research, vol. 10, pp. 175–181, 2007.
[30]
K. D. Reuben, F. I. Abdulrahman, J. C. Akan, H. Usman, O. A. Sodipo, and G. O. Egwu, “Phytochemical screening and in vitro antimicrobial investigation of the Methanolic extract of Croton zambesicus muell ARG. stem bark,” European Journal of Scientific Research, vol. 23, no. 1, pp. 134–140, 2008.