全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Study of Rheological Properties of Industrial Lubricants

DOI: 10.1155/2014/324615

Full-Text   Cite this paper   Add to My Lib

Abstract:

The most important rheological parameter for lubricants is viscosity as it also affects the tribological properties like friction between interacting surfaces and wear. This research intends to study the relationship between viscosity and temperature at different shear rates for multiple grades of three different categories of lubricants used for different applications viz. L1: MG20W50 (engine oil), L2: SAE20W50 (engine oil), L3: MC20W50 (mineral engine oil), L4: EP90 (gear oil), and L5: DXTIII (steering fluid). Constant high dynamic viscosity, shear stress, and low compressibility at different temperatures in multigrade as well as single grade industrial oil will help to maintain the surface film over the period of time and hence the reduction in wear. The dynamic viscosity of these chosen samples has been measured experimentally in temperature range of 20 to 50°C. The measurements have been extended to observe the dependence of shear rate, time, and temperature on the dynamic viscosity. All the samples are observed to behave like Newtonian fluids in the entire temperature range of study. Further, all samples seem to obey the Arrhenius relationship with temperature. Shear stress shows linear variation with shear rate exhibiting uniform viscosity which is substantiated by almost no variation in dynamic viscosity with shear rate for value above 5 per second. 1. Introduction The role of lubrication is an important part in the field of tribology. Lubrication is to smoothen the movement of one surface over another and to maintain the viscoelastic behavior [1]. Lubricants are commonly used for lubrication to reduce the friction and wear of surfaces in contact [2] and effective heat transfer due to good thermal conductivity. Most lubricants are liquids (such as mineral oils, synthetic oil, silicon fluids, water, etc.). Selection of lubricant is very important for providing machine tools a longer life. To select an appropriate lubricant, it is necessary to know its properties, lubrication system of applied machinery, conditions of machinery, cost of lubricant [3]. Common properties of lubricating oil are: viscosity, viscosity index, density, compressibility, surface tension, cloud point, pour point or low temperature property, flash point, friction coefficient, high boiling point, low freezing point, thermal stability, corrosion prevention, high resistance to oxidation, and so forth. The most important property is its viscosity. Viscosity is a function of temperature and pressure. The relationship between the viscosity and temperature and the relationship

References

[1]  B. Bhushan, Principles and Applications of Tribology, John Wiley & Sons, New York, NY, USA, 1999.
[2]  A. R. Lansdown, Lubrication: A Practical Guide to Lubricant Selection, Pergamon Press, Oxford, UK, 1982.
[3]  W. R. Schowalter, Mechanics of Non-Newtonian Fluids, Pergamon Press, Oxford, UK, 1978.
[4]  C. Barus, “Isothermal, isopiestics and isometrics relative to viscosity,” The American Journal of Science, vol. 45, pp. 87–96, 1893.
[5]  Engine Oil Licensing and Certification System, API 1509, 15th edition, 2002, Appendix E: API Base Oil Interchangeability Guidelines for Passenger Car Motor Oils and Diesel Engine Oils (revised).
[6]  R. H. Schlosberg, J. W. Chu, G. A. Knudsen, E. N. Suciu, and H. S. Aldrich, “High stability esters for synthetic lubricant applications,” Lubrication Engineering, vol. 57, no. 2, pp. 21–26, 2001.
[7]  M. Woydt, “No/Low SAP and alternative engine oil development and testing,” Journal of ASTM International, vol. 4, no. 10, 2007.
[8]  K. Dieter, Lubricants and Related Products, Chemie, Hoboken, NJ, USA, 1984.
[9]  N. Ohno, N. Kuwano, and F. Hirano, “Observation of mechanical behaviour of solidified oils by using photoelastic method,” Journal of Japan Society of Lubrication Engineers, vol. 33, no. 9, pp. 693–699, 1988.
[10]  S. Mia and N. Ohno, “Relation between low temperature fluidity and sound velocity of lubricating oil,” Tribology International, vol. 43, no. 5-6, pp. 1043–1047, 2010.
[11]  S. Mia and N. Ohno, “Prediction of pressure-viscosity coeffi cient of lubricating oils based on sound velocity,” Lubrication Science, vol. 21, no. 9, pp. 343–354, 2009.
[12]  S. Mia and N. Ohno, “Effect of high adiabatic bulk modulus on the rheological behavior of hydraulic fluid,” in Proceedings of the 13th Asian Congress of Fluid Mechanics, pp. 17–21, Dhaka, Bangladesh, December 2010.
[13]  N. Ohno and F. Hirano, “High pressure rheology analysis of traction oils based on free volume measurements,” Lubrication Engineering, vol. 57, no. 7, pp. 16–22, 2001.
[14]  T. Tsubouchi and J. Shinoda, “Characterization of oily high bulk modulus fluid,” in Proceedings of the World Tribology Congress, p. 532, Kyoto, Japan, September 2009.
[15]  P. Thapliyal, R. Sethi, A. Vasishth, and G. Anand, “Study of elastic and rheological properties of piezoviscous elastic engine oils,” in Proceedings of the International Conference on Nanotechnology in Conventional and Alternative Energy Systems: A Global Status and Pathways, University of Petroleum and Energy Studies, Dehradun, India, August 2013.
[16]  D. Knezevic and V. Savic, “Mathematical modelling of changing of dynamic viscosity, as a function of temperature and pressure, of mineral oils for hydraulic systems,” Facta Universitatis, Series: Mechanical Engineering, vol. 4, no. 1, pp. 27–34, 2006.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133