Calcium crystals are present in the synovial fluid of 65%–100% patients with osteoarthritis (OA) and 20%–39% patients with rheumatoid arthritis (RA). This study sought to investigate the role of fibroblast-like synoviocytes (FLSs) in calcium mineral formation. We found that numerous genes classified in the biomineral formation process, including bone gamma-carboxyglutamate (gla) protein/osteocalcin, runt-related transcription factor 2, ankylosis progressive homolog, and parathyroid hormone-like hormone, were differentially expressed in the OA and RA FLSs. Calcium deposits were detected in FLSs cultured in regular medium in the presence of ATP and FLSs cultured in chondrogenesis medium in the absence of ATP. More calcium minerals were deposited in the cultures of OA FLSs than in the cultures of RA FLSs. Examination of the micromass stained with nonaqueous alcoholic eosin indicated the presence of birefringent crystals. Phosphocitrate inhibited the OA FLSs-mediated calcium mineral deposition. These findings together suggest that OA FLSs are not passive bystanders but are active players in the pathological calcification process occurring in OA and that potential calcification stimuli for OA FLSs-mediated calcium deposition include ATP and certain unidentified differentiation-inducing factor(s). The OA FLSs-mediated pathological calcification process is a valid target for the development of disease-modifying drug for OA therapy. 1. Introduction Basic calcium phosphate (BCP) crystals and calcium pyrophosphate dihydrate (CPPD) crystals are the two most common forms of articular crystals. Earlier studies find that these calcium crystals are associated with end-stage osteoarthritis (OA) in approximately 60% of cases [1, 2]. Recent studies, however, find that these calcium crystals are associated with end-stage OA in all cases and that the extent of cartilage calcification correlates with the histological grade of cartilage degeneration and clinical symptoms [3–6]. In addition, studies found that more calcium minerals are formed and deposited in the cultures of OA chondrocytes and meniscal cells than in the cultures of normal chondrocytes and meniscal cells [4, 6]. These findings indicate that pathological calcification is an active component of the OA disease process. Increasing experimental evidence indicates that these calcium crystals may play a role in the disease process of OA. Injection of calcium crystals into the knee joints of dogs and mice induced severe inflammatory response [7, 8]. Calcium crystals added into cell culture induced cell mitogenesis
References
[1]
B. A. Derfus, J. B. Kurian, J. J. Butler et al., “The high prevalence of pathologic calcium crystals in pre-operative knees,” Journal of Rheumatology, vol. 29, no. 3, pp. 570–574, 2002.
[2]
S. Nalbant, J. A. M. Martinez, T. Kitumnuaypong, G. Clayburne, M. Sieck, and H. R. Schumacher Jr., “Synovial fluid features and their relations to osteoarthritis severity: new findings from sequential studies,” Osteoarthritis and Cartilage, vol. 11, no. 1, pp. 50–54, 2003.
[3]
P. Nero, I. Nogueira, R. Vilar, J. B. Piment?o, and J. C. Branco, “Synovial fluid crystal identification by electron microscopy,” Acta Reumatologica Portuguesa, vol. 31, no. 1, pp. 75–81, 2006.
[4]
M. Fuerst, J. Bertrand, L. Lammers et al., “Calcification of articular cartilage in human osteoarthritis,” Arthritis and Rheumatism, vol. 60, no. 9, pp. 2694–2703, 2009.
[5]
M. Fuerst, O. Niggemeyer, L. Lammers, F. Sch?fer, C. Lohmann, and W. Rüther, “Articular cartilage mineralization in osteoarthritis of the hip,” BMC Musculoskeletal Disorders, vol. 10, article 166, 2009.
[6]
Y. Sun, D. R. Mauerhan, P. R. Honeycutt et al., “Calcium deposition in osteoarthritic meniscus and meniscal cell culture,” Arthritis Research and Therapy, vol. 12, no. 2, article R56, 2010.
[7]
D. J. McCarty, “Crystal-induced inflammation of the joints,” Annual Review of Medicine, vol. 21, pp. 357–366, 1970.
[8]
H. K. Ea, V. Chobaz, C. Nguyen, et al., “Pathogenic role of basic calcium phosphate crystals in destructive arthropathies,” PLoS ONE, vol. 8, no. 2, Article ID e57352, 2013.
[9]
M. P. Morgan, L. C. Whelan, J. D. Sallis, C. J. McCarthy, D. J. Fitzgerald, and G. M. McCarthy, “Basic calcium phosphate crystal-induced prostaglandin E2 production in human fibroblasts: role of cyclooxygenase 1, cyclooxygenase 2, and interleukin-1β,” Arthritis and Rheumatism, vol. 50, no. 5, pp. 1642–1649, 2004.
[10]
G. M. McCarthy, H. S. Cheung, S. M. Abel, and L. M. Ryan, “Basic calcium phosphate crystal-induced collagenase production: role of intracellular crystal dissolution,” Osteoarthritis and Cartilage, vol. 6, no. 3, pp. 205–213, 1998.
[11]
Y. Sun, L. Wenger, C. E. Brinckerhoff, R. R. Misra, and H. S. Cheung, “Basic calcium phosphate crystals induce matrix metalloproteinase-1 through the Ras/mitogen-activated protein kinase/c-Fos/AP-1/metalloproteinase 1 pathway: involvement of transcription factor binding sites AP-1 and PEA-3,” Journal of Biological Chemistry, vol. 277, no. 2, pp. 1544–1552, 2002.
[12]
H.-K. Ea, B. Uzan, C. Rey, and F. Lioté, “Octacalcium phosphate crystals directly stimulate expression of inducible nitric oxide synthase through p38 and JNK mitogen-activated protein kinases in articular chondrocytes,” Arthritis Research & Therapy, vol. 7, no. 5, pp. R915–R926, 2005.
[13]
G. M. McCarthy, P. G. Mitchell, and H. S. Cheung, “The mitogenic response to stimulation with basic calcium phosphate crystals is accompanied by induction and secretion of collagenase in human fibroblasts,” Arthritis and Rheumatism, vol. 34, no. 8, pp. 1021–1030, 1991.
[14]
H. S. Cheung, J. D. Sallis, K. D. Demadis, and A. Wierzbicki, “Phosphocitrate blocks calcification-induced articular joint degeneration in a guinea pig model,” Arthritis and Rheumatism, vol. 54, no. 8, pp. 2452–2461, 2006.
[15]
H. S. Cheung, “Phosphocitrate as a potential therapeutic strategy for crystal deposition disease,” Current Rheumatology Reports, vol. 3, no. 1, pp. 24–28, 2001.
[16]
I. Saito, T. Koshino, K. Nakashima, M. Uesugi, and T. Saito, “Increased cellular infiltrate in inflammatory synovia of osteoarthritic knees,” Osteoarthritis and Cartilage, vol. 10, no. 2, pp. 156–162, 2002.
[17]
M. D. Smith, S. Triantafillou, A. Parker, P. P. Youssef, and M. Coleman, “Synovial membrane inflammation and cytokine production in patients with early osteoarthritis,” Journal of Rheumatology, vol. 24, no. 2, pp. 365–371, 1997.
[18]
A. D. Pearle, C. R. Scanzello, S. George et al., “Elevated high-sensitivity C-reactive protein levels are associated with local inflammatory findings in patients with osteoarthritis,” Osteoarthritis and Cartilage, vol. 15, no. 5, pp. 516–523, 2007.
[19]
H. Kato, A. Matsumine, T. Wakabayashi et al., “Large-scale gene expression profiles, differentially represented in osteoarthritic synovium of the knee joint using cDNA microarray technology,” Biomarkers, vol. 12, no. 4, pp. 384–402, 2007.
[20]
C. L. Galligan, E. Baig, V. Bykerk, E. C. Keystone, and E. N. Fish, “Distinctive gene expression signatures in rheumatoid arthritis synovial tissue fibroblast cells: correlates with disease activity,” Genes and Immunity, vol. 8, no. 6, pp. 480–491, 2007.
[21]
Y. Sun, D. R. Mauerhan, G. S. Firestein, B. J. Loeffler, E. N. Hanley, and H. E. Gruber, “Telomerase transduced osteoarthritis fibroblast-like synoviocytes display a distinct gene expression profile,” Journal of Rheumatology, vol. 36, no. 1, pp. 141–155, 2009.
[22]
R. Lagier, C.-A. Baud, D. Lacotte, and J.-C. Gerster, “Osteoarthrosis and apatite synovitis: pathological study of a metacarpophalangeal joint,” Virchows Archiv A: Pathological Anatomy and Histopathology, vol. 416, no. 1, pp. 91–96, 1989.
[23]
L. Dai, F. Pessler, L. X. Chen, G. Clayburne, and H. R. Schumacher, “Detection and initial characterization of synovial lining fragments in synovial fluid,” Rheumatology, vol. 45, no. 5, pp. 533–537, 2006.
[24]
P. B. Halverson, J. C. Garancis, and D. J. McCarthy, “Histopathological and ultrastructural studies of synovium in Milwaukee shoulder syndrome—a basic calcium phosphate crystal arthropaty,” Annals of the Rheumatic Diseases, vol. 43, no. 5, pp. 734–741, 1984.
[25]
K. D. Brandt and P. R. Krey, “Chalky joint effusion: the result of massive synovial deposition of calcium apatite in progressive systemic sclerosis,” Arthritis and Rheumatism, vol. 20, no. 3, pp. 792–796, 1977.
[26]
A. J. Reginato and H. R. Schumacher, “Synovial calcification in a patient with collagen-vascular disease: light and electron microscopic studies,” Journal of Rheumatology, vol. 4, no. 3, pp. 261–271, 1977.
[27]
A. Swan, B. Chapman, P. Heap, H. Seward, and P. Dieppe, “Submicroscopic crystals in osteoarthritic synovial fluids,” Annals of the Rheumatic Diseases, vol. 53, no. 7, pp. 467–470, 1994.
[28]
E. Hamilton, M. Pattrick, J. Hornby, G. Derrick, and M. Doherty, “Synovial fluid calcium pyrophosphate dihydrate crystals and alizarin red positivity: analysis of 3000 samples,” British Journal of Rheumatology, vol. 29, no. 2, pp. 101–104, 1990.
[29]
F. Oliviero, A. Scanu, P. Galozzi, et al., “Prevalence of calcium pyrophosphate and monosodium urate crystals in synovial fluid of patients with previously diagnosed joint diseases,” Joint Bone Spine, vol. 80, no. 3, pp. 287–290, 2013.
[30]
A. Yavorskyy, A. Hernandez-Santana, B. Shortt, G. McCarthy, and G. McMahon, “Determination of calcium in synovial fluid samples as an aid to diagnosing osteoarthritis,” Bioanalysis, vol. 2, no. 2, pp. 189–195, 2010.
[31]
P. A. Turhanen, K. D. Demadis, S. Per?niemi, and J. J. Veps?l?inen, “A novel strategy for the preparation of naturally occurring phosphocitrate and its partially esterified derivatives,” Journal of Organic Chemistry, vol. 72, no. 4, pp. 1468–1471, 2007.
[32]
M. Pfaffl, H. H. D. Meyer, and H. Sauerwein, “Quantification of insulin-like growth factor-1 (IGF-1) mRNA: development and validation of an internally standardised competitive reverse transcription-polymerase chain reaction,” Experimental and Clinical Endocrinology and Diabetes, vol. 106, no. 6, pp. 506–513, 1998.
[33]
A. K. Rosenthal, C. M. Gohr, M. Uzuki, and I. Masuda, “Osteopontin promotes pathologic mineralization in articular cartilage,” Matrix Biology, vol. 26, no. 2, pp. 96–105, 2007.
[34]
A. K. Rosenthal, E. Mattson, C. M. Gohr, and C. J. Hirschmugl, “Characterization of articular calcium-containing crystals by synchrotron FTIR,” Osteoarthritis and Cartilage, vol. 16, no. 11, pp. 1395–1402, 2008.
[35]
V. Shidham, M. Chivukula, Z. Basir, and G. Shidham, “Evaluation of crystals in formalin-fixed, paraffin-embedded tissue sections for the differential diagnosis of pseudogout, gout, and tumoral calcinosis,” Modern Pathology, vol. 14, no. 8, pp. 806–810, 2001.
[36]
X. Wang, P. A. Manner, A. Horner, L. Shum, R. S. Tuan, and G. H. Nuckolls, “Regulation of MMP-13 expression by RUNX2 and FGF2 in osteoarthritic cartilage,” Osteoarthritis and Cartilage, vol. 12, no. 12, pp. 963–973, 2004.
[37]
S. Kamekura, Y. Kawasaki, K. Hoshi et al., “Contribution of runt-related transcription factor 2 to the pathogenesis of osteoarthritis in mice after induction of knee joint instability,” Arthritis and Rheumatism, vol. 54, no. 8, pp. 2462–2470, 2006.
[38]
K. Johnson, K. Pritzker, J. Goding, and R. Terkeltaub, “The nucleoside triphosphate pyrophosphohydrolase isozyme PC-1 directly promotes cartilage calcification through chondrocyte apoptosis and increased calcium precipitation by mineralizing vesicles,” Journal of Rheumatology, vol. 28, no. 12, pp. 2681–2691, 2001.
[39]
A. Idelevich, Y. Rais, and E. Monsonego-Ornan, “Bone Gla protein increases HIF-1α-dependent glucose metabolism and induces cartilage and vascular calcification,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 31, no. 9, pp. e55–e71, 2011.
[40]
S. F. Lo, L. Wan, H. C. Lin, et al., “Association of rheumatoid arthritis risk with EGFR genetic polymorphisms in Taiwan's Han Chinese population,” Rheumatology International, vol. 32, no. 8, pp. 2301–2306, 2012.
[41]
J. G. Wang, W. D. Xu, W. T. Zhai, et al., “Disorders in angiogenesis and redox pathways are main factors contributing to the progression of rheumatoid arthritis: a comparative proteomic study,” Arthritis and Rheumatology, vol. 64, no. 4, pp. 993–1004, 2012.
[42]
C. Baerwald, C. Graefe, C. Muhl, P. von Wichert, and A. Krause, “β2-Adrenergic receptors on peripheral blood mononuclear cells in patients with rheumatic diseases,” European Journal of Clinical Investigation, vol. 22, supplemet 1, pp. 42–46, 1992.
[43]
R. J. U. Lories, I. Derese, J. L. Ceuppens, and F. P. Luyten, “Bone morphogenetic proteins 2 and 6, expressed in arthritic synovium, are regulated by proinflammatory cytokines and differentially modulate fibroblast-Like synoviocyte apoptosis,” Arthritis and Rheumatism, vol. 48, no. 10, pp. 2807–2818, 2003.
[44]
P. E. Poubelle, A. Chakravarti, M. J. Fernandes, K. Doiron, and A.-A. Marceau, “Differential expression of RANK, RANK-L, and osteoprotegerin by synovial fluid neutrophils from patients with rheumatoid arthritis and by healthy human blood neutrophils,” Arthritis Research and Therapy, vol. 9, no. 2, article R25, 2007.
[45]
J. F. Schlaak, I. Pfers, K. H. Meyer Zum Büschenfelde, and E. M?rker-Hermann, “Different cytokine profiles in the synovial fluid of patients with osteoarthritis, rheumatoid arthritis and seronegative spondylarthropathies,” Clinical and Experimental Rheumatology, vol. 14, no. 2, pp. 155–162, 1996.
[46]
J. P. Mattei, V. Ferrera, Y. Boutsen et al., “Serum and synovial fluid osteocalcin in rheumatic diseases,” International Journal of Clinical Pharmacology Research, vol. 12, no. 3, pp. 103–107, 1992.
[47]
T. Horiuchi, T. Yoshida, Y. Koshihara et al., “The increase of parathyroid hormone-related peptide and cytokine levels in synovial fluid of elderly rheumatoid arthritis and osteoarthritis,” Endocrine Journal, vol. 46, no. 5, pp. 643–649, 1999.
[48]
H. Kohno, C. Shigeno, R. Kasai, et al., “Synovial fluids from patients with osteoarthritis and rheumatoid arthritis contain high levels of parathyroid hormone-related peptide,” Journal of Bone and Mineral Research, vol. 12, no. 5, pp. 847–854, 1997.
[49]
T. Pufe, G. Groth, M. B. Goldring, B. Tillmann, and R. Mentlein, “Effects of pleiotrophin, a heparin-binding growth factor, on human primary and immortalized chondrocytes,” Osteoarthritis and Cartilage, vol. 15, no. 2, pp. 155–162, 2007.
[50]
A. D. Theocharis, C. Seidel, M. Borset et al., “Serglycin constitutively secreted by myeloma plasma cells is a potent inhibitor of bone mineralization in vitro,” Journal of Biological Chemistry, vol. 281, no. 46, pp. 35116–35128, 2006.
[51]
J. Jiang, N. L. Leong, J. C. Mung, C. Hidaka, and H. H. Lu, “Interaction between zonal populations of articular chondrocytes suppresses chondrocyte mineralization and this process is mediated by PTHrP,” Osteoarthritis and Cartilage, vol. 16, no. 1, pp. 70–82, 2008.
[52]
E. Schipani, B. Lanske, J. Hunzelman, et al., “Targeted expression of constitutively active receptors for parathyroid hormone and parathyroid hormone-related peptide delays endochondral bone formation and rescues mice that lack parathyroid hormone-related peptide,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 25, pp. 13689–13694, 1997.
[53]
N. B. Weksler, G. P. Lunstrum, E. S. Reid, and W. A. Horton, “Differential effects of fibroblast growth factor (FGF) 9 and FGF2 on proliferation, differentiation and terminal differentiation of chondrocytic cells in vitro,” Biochemical Journal, vol. 342, no. 3, pp. 677–682, 1999.
[54]
C. J. Williams, A. Pendleton, G. Bonavita et al., “Mutations in the amino terminus of ANKH in two US families with calcium pyrophosphate dihydrate crystal deposition disease,” Arthritis and Rheumatism, vol. 48, no. 9, pp. 2627–2631, 2003.
[55]
P. Netter, T. Bardin, A. Bianchi, P. Richette, and D. Loeuille, “The ANKH gene and familial calcium pyrophosphate dihydrate deposition disease,” Joint Bone Spine, vol. 71, no. 5, pp. 365–368, 2004.
[56]
C. H. Lee, B. Shah, E. K. Moioli, and J. J. Mao, “CTGF directs fibroblast differentiation from human mesenchymal stem/stromal cells and defines connective tissue healing in a rodent injury model,” Journal of Clinical Investigation, vol. 120, no. 9, pp. 3340–3349, 2010.
[57]
C. Laflamme, S. Curt, and M. Rouabhia, “Epidermal growth factor and bone morphogenetic proteins upregulate osteoblast proliferation and osteoblastic markers and inhibit bone nodule formation,” Archives of Oral Biology, vol. 55, no. 9, pp. 689–701, 2010.
[58]
J. Zhu, E. Shimizu, X. Zhang, N. C. Partridge, and L. Qin, “EGFR signaling suppresses osteoblast differentiation and inhibits expression of master osteoblastic transcription factors Runx2 and Osterix,” Journal of Cellular Biochemistry, vol. 112, no. 7, pp. 1749–1760, 2011.
[59]
H. Oka, M. Miyauchi, K. Sakamoto et al., “Prostaglandin E2 inhibits mineralization and enhances matrix metalloproteinase-13 in mature cementoblasts mainly via the EP4 pathway,” Archives of Oral Biology, vol. 53, no. 3, pp. 243–249, 2008.
[60]
B. A. Byers and A. J. García, “Exogenous Runx2 expression enhances in vitro osteoblastic differentiation and mineralization in primary bone marrow stromal cells,” Tissue Engineering, vol. 10, no. 11-12, pp. 1623–1632, 2004.
[61]
S. Narisawa, M. C. Yadav, and J. L. Millan, “In vivo overexpression of tissue-nonspecific alkaline phosphatase increases skeletal mineralization and affects the phosphorylation status of osteopontin,” Journal of Bone and Mineral Research, vol. 28, no. 7, pp. 1587–1598, 2013.
[62]
H. Fernandes, K. Dechering, E. van Someren et al., “Effect of chordin-like 1 on MC3T3-E1 and human mesenchymal stem cells,” Cells Tissues Organs, vol. 191, no. 6, pp. 443–452, 2010.
[63]
O. Segev, A. Samach, A. Faerman et al., “CMF608 -a novel mechanical strain-induced bone-specific protein expressed in early osteochondroprogenitor cells,” Bone, vol. 34, no. 2, pp. 246–260, 2004.
[64]
M. Tamura and M. Noda, “Identification of DERMO-1 as a member of helix-loop-helix type transcription factors expressed in osteoblastic cells,” Journal of Cellular Biochemistry, vol. 72, no. 2, pp. 167–176, 1999.
[65]
M. S. Lee, G. Lowe, S. Flanagan, K. Kuchler, and C. A. Glackin, “Human dermo-1 has attributes similar to twist in early bone development,” Bone, vol. 27, no. 5, pp. 591–602, 2000.
[66]
M. Horie, I. Sekiya, T. Muneta et al., “Intra-articular injected synovial stem cells differentiate into meniscal cells directly and promote meniscal regeneration without mobilization to distant organs in rat massive meniscal defect,” Stem Cells, vol. 27, no. 4, pp. 878–887, 2009.
[67]
H. Stein, I. A. Bab, and J. Sela, “The occurrence of hydroxyapatite crystals in extracellular matrix vesicles after surgical manipulation of the rabbit knee joint,” Cell and Tissue Research, vol. 214, no. 3, pp. 449–454, 1981.
[68]
M. Pattrick, E. Hamilton, J. Hornby, and M. Doherty, “Synovial fluid pyrophosphate and nucleoside triphosphate pyrophosphatase: comparison between normal and diseased and between inflamed and non-inflamed joints,” Annals of the Rheumatic Diseases, vol. 50, no. 4, pp. 214–218, 1991.
[69]
L. M. Ryan, J. W. Rachow, and D. J. McCarty, “Synovial fluid ATP: a potential substrate for the production of inorganic pyrophosphate,” Journal of Rheumatology, vol. 18, no. 5, pp. 716–720, 1991.