全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Hybrid Materials for Integrated Photonics

DOI: 10.1155/2014/891395

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this review materials and technologies of the hybrid approach to integrated photonics (IP) are addressed. IP is nowadays a mature technology and is the most promising candidate to overcome the main limitations that electronics is facing due to the extreme level of integration it has achieved. IP will be based on silicon photonics in order to exploit the CMOS compatibility and the large infrastructures already available for the fabrication of devices. But silicon has severe limits especially concerning the development of active photonics: its low efficiency in photons emission and the limited capability to be used as modulator require finding suitable materials able to fulfill these fundamental tasks. Furthermore there is the need to define standardized processes to render these materials compatible with the CMOS process and to fully exploit their capabilities. This review describes the most promising materials and technological approaches that are either currently implemented or may be used in the coming future to develop next generations of hybrid IP devices. 1. Introduction Photonics is a pervasive technology with a widespread number of technological applications [1]. All around us we are surrounded by photonic devices: from the monitor you are probably using to read this paper to the fluorescent (or LED) lamp that illuminates the room you are sitting in. Nowadays photonics is the leading technology in broadband long range communication systems and is the only foreseen solution to support the exponential increase of Internet traffic in the coming years [2]. For short link lengths and smaller bandwidths, electronic systems are still more efficient than the photonic paradigm [3] but Integrated Photonics (IP) is steadily pushing the limit where photonics becomes competitive with electronics to shorter and shorter distances as demonstrated by the commercialization of the first all-optical links for board to board connections. Both Corning and Sumitomo released optical cables compatible with the Thunderbolt technology that achieve the impressive bandwidth of 10?Gb/s. These cables use optoelectronic interfaces to convert electrical into optical signals and viceversa and are fully transparent for the end user. It is expected that, in the near future, similar standard will be available for intraboard and chip to chip systems. Ideally photonics is a much more efficient platform to develop communication systems: photons do not interact with each other in linear regime; they do not dissipate heat along the transmission line and logical operation may be

References

[1]  I. Weir, G. Archenhold, M. Robinson, M. Williams, and P. Hilton, “Photonics Technologies and market for a low carbon economy,” Summary report published by EC, (Paderborn), 2012.
[2]  C. Kachris, K. Bergman, and I. Tomkos, Eds., Optical Interconnects for Future Data Center Networks, Springer, New York, NY, USA, 2013.
[3]  A. V. Krishnamoorthy, “Progress in low-power switched optical interconnects,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 17, no. 2, pp. 357–376, 2011.
[4]  C. Mesaritakis, V. Papataxiarhis, and D. Syvridis, “Microring resonators as building blocks for an all-optical high-speed reservoir-computing bit-pattern-recognition system,” Journal of Optical Society of America B: Optical Physics, vol. 30, no. 11, pp. 3048–3055, 2013.
[5]  D. Brunner, M. Cornelles Soriano, and I. Fischer, “High-speed optical vector and matrix operations using a semiconductor laser,” IEEE Photonics Technology Letters, vol. 25, no. 17, pp. 1680–1683, 2013.
[6]  D. Brunner, M. C. Soriano, C. R. Mirasso, and I. Fischer, “Parallel photonic information processing at gigabyte per second data rates using transient states,” Nature Communications, vol. 4, p. 1364, 2013.
[7]  M. C. Soriano, J. García-Ojalvo, C. R. Mirasso, and I. Fischer, “Complex photonics: dynamics and applications of delay-coupled semiconductors lasers,” Reviews of Modern Physics, vol. 85, no. 1, pp. 421–470, 2013.
[8]  J. Andréasson, U. Pischel, S. D. Straight, T. A. Moore, A. L. Moore, and D. Gust, “All-photonic multifunctional molecular logic device,” Journal of the American Chemical Society, vol. 133, no. 30, pp. 11641–11648, 2011.
[9]  B. Fresch, D. Hiluf, E. Collini, R. D. Levine, and F. Remacl, “Molecular decision trees realized by ultrafast electronic spectroscopy,” Proceedings of the National Academy of Science, vol. 110, no. 43, pp. 17183–17188, 2013.
[10]  O. Wada, “Recent progress in semiconductor-based photonic signal-processing devices,” IEEE Journal on Selected Topics in Quantum Electronics, vol. 17, no. 2, pp. 309–319, 2011.
[11]  M. Fiorani, M. Casoni, and S. Aleksic, “Hybrid optical switching for an energy-efficient internet core,” IEEE Internet Computing, vol. 17, no. 1, pp. 14–22, 2013.
[12]  G. Cook and J. van Horn, “How dirt is your data?” Greenpeace International, 2011, http://www.greenpeace.org/international/Global/international/publications/climate/2011/Cool%20IT/dirty-data-report-greenpeace.pdf.
[13]  G. Lifante, Integrated Photonics: Fundamentals, Wiley, 2003.
[14]  R. Nagarajan and M. Smit, “Photonic integration,” IEEE LEOS Newsletter, pp. 4–10, 2007.
[15]  Y. J. Heo and S. Takeuchi, “Towards smart tattoos: implantable biosensors for continuous glucose monitoring,” Advanced Healthcare Materials, vol. 2, no. 1, pp. 43–56, 2013.
[16]  T. B. Singh, N. S. Sariciftci, and J. G. Grote, “Bio-organic optoelectronic devices using DNA,” in Organic Electronics, vol. 223 of Advances in Polymer Science, pp. 73–112, Springer, 2010.
[17]  D.-H. Kim, R. Ghaffari, N. Lu, and J. A. Rogers, “Flexible and stretchable electronics for biointegrated devices,” Annual Review of Biomedical Engineering, vol. 14, pp. 113–128, 2012.
[18]  H. Ko, R. Kapadia, K. Takei, T. Takahashi, X. Zhang, and A. Javey, “Multifunctional, flexible electronic systems based on engineered nanostructured materials,” Nanotechnology, vol. 23, no. 34, Article ID 344001, 2012.
[19]  M. Singh, H. M. Haverinen, P. Dhagat, and G. E. Jabbour, “Inkjet printing-process and its applications,” Advanced Materials, vol. 22, no. 6, pp. 673–685, 2010.
[20]  M. Jung, J. Kim, J. Noh et al., “All-Printed and roll-to-roll-printable 13.56-MHz-operated 1-bit RF tag on plastic foils,” IEEE Transactions on Electron Devices, vol. 57, no. 3, pp. 571–580, 2010.
[21]  D. Briand, A. Oprea, J. Courbat, and N. Barsan, “Making environmental sensors on plastic foil,” Materials Today, vol. 14, no. 9, pp. 416–423, 2011.
[22]  P. F. Moonen, I. Yakimets, and J. Huskens, “Fabrication of transistors on flexible substrates: from mass-printing to high-resolution alternative lithography strategies,” Advanced Materials, vol. 24, no. 41, pp. 5526–5541, 2012.
[23]  M. J. R. Heck, M. L. Davenport, and J. E. Bowers, “Progress in hybrid-silicon photonic integrated circuit technology,” SPIE Newsroom, 2013.
[24]  D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nature Photonics, vol. 4, no. 8, pp. 511–517, 2010.
[25]  G. Roelkens, Y. D. Koninck, S. Keyvaninia et al., “Hybrid silicon lasers,” in Optoelectronic Integrated Circuits XIII, L. A. Eldada and E.-H. Lee, Eds., vol. 7972 of Proceedings of SPIE, January 2011.
[26]  A. W. Fang, H. Park, Y.-H. Kuo et al., “Hybrid silicon evanescent devices,” Materials Today, vol. 10, no. 7-8, pp. 28–35, 2007.
[27]  G. Roelkens, L. Liu, D. Liang et al., “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser & Photonics Reviews, vol. 4, no. 6, pp. 751–779, 2010.
[28]  J. van Campenhout, L. Liu, P. R. Romeo et al., “A compact SOI-integrated multiwavelength laser source based on cascaded InP microdisks,” IEEE Photonics Technology Letters, vol. 20, no. 16, pp. 1345–1347, 2008.
[29]  M. Lamponi, S. Keyvaninia, C. Jany et al., “Heterogeneously integrated InP/SOI laser using double tapered single-mode waveguides through adhesive die to wafer bonding,” in Proceedings of the 7th IEEE International Conference on Group IV Photonics (GFP '10), pp. 22–24, Beijing, China, September 2010.
[30]  S. Keyvaninia, G. Roelkens, D. van Thourhout et al., “Demonstration of a heterogeneously integrated III-V/SOI single wavelength tunable laser,” Optics Express, vol. 21, no. 3, pp. 3784–3792, 2013.
[31]  S. Keyvaninia, G. Roelkens, R. Baets et al., “Demonstration of a novel III-V-on-Si distributed feedback laser,” in Proceedings of the Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC '13), 2013.
[32]  Z. Huang and Y. Wang, “Four-wavelength III-V/SOI heterogeneous integrated laser based on sampled bragg grating for CWDM,” IEEE Photonics Journal, vol. 5, no. 5, Article ID 1501906, 2013.
[33]  V. I. Klimov, A. A. Mikhailovsky, S. Xu et al., “Optical gain and stimulated emission in nanocrystal quantum dots,” Science, vol. 290, no. 5490, pp. 314–317, 2000.
[34]  M. S. Bakshi, P. Thakur, G. Kaur et al., “Stabilization of PbS nanocrystals by bovine serum albumin in its native and denatured states,” Advanced Functional Materials, vol. 19, no. 9, pp. 1451–1458, 2009.
[35]  A. Omari, I. Moreels, F. Masia et al., “Role of interband and photoinduced absorption in the nonlinear refraction and absorption of resonantly excited PbS quantum dots around 1550 nm,” Physical Review B: Condensed Matter and Materials Physics, vol. 85, no. 11, Article ID 115318, 2012.
[36]  Y. K. Olsson, G. Chen, R. Rapaport et al., “Fabrication and optical properties of polymeric waveguides containing nanocrystalline quantum dots,” Applied Physics Letters, vol. 85, no. 19, pp. 4469–4471, 2004.
[37]  J. Grandidier, G. C. des Francs, S. Massenot et al., “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Letters, vol. 9, no. 8, pp. 2935–2939, 2009.
[38]  N. Tessler, V. Medvedev, M. Kazes, S. Kan, and U. Banin, “Efficient near-infrared polymer nanocrystal light-emitting diodes,” Science, vol. 295, no. 5559, pp. 1506–1508, 2002.
[39]  L. Bakueva, S. Musikhin, M. A. Hines et al., “Size-tunable infrared (1000-1600 nm) electroluminescence from PbS quantum-dot nanocrystals in a semiconducting polymer,” Applied Physics Letters, vol. 82, no. 17, pp. 2895–2897, 2003.
[40]  M. Humer, R. Guider, W. Jantsch, and T. Fromherz, “Integration, photostability and spontaneous emission rate enhancement of colloidal PbS nanocrystals for Si-based photonics at telecom wavelengths,” Optics Express, vol. 21, no. 16, pp. 18680–[18688, 2013.
[41]  Y. Shoji, T. Ogasawara, T. Kamei et al., “Ultrafast nonlinear effects in hydrogenated amorphous silicon wire waveguide,” Optics Express, vol. 18, no. 6, pp. 5668–5673, 2010.
[42]  Y. A. Vlasov and S. J. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Optics Express, vol. 12, no. 8, pp. 1622–1631, 2004.
[43]  M. Humer, R. Guider, W. Jantsch, and T. Fromherz, “Colloidal PbS nanocrystals integrated to Si-based photonics for applications at telecom wavelengths,” in International Society for Optical Engineering, J. M. Fedeli, L. Vivien, and M. K. Smit, Eds., vol. 8767 of Proceedings of SPIE, 2013.
[44]  A. Omari, P. Geiregat, D. van Thourhout, and Z. Hens, “Light absorption in hybrid silicon-on insulator/quantum dot waveguides,” Optics Express, vol. 21, no. 20, pp. 23272–23285, 2013.
[45]  K. A. Abel, J. Shan, J.-C. Boyer, F. Harris, and F. C. J. M. van Veggel, “Highly photoluminescent PbS nanocrystals: The beneficial effects of trioctylphosphine,” Chemistry of Materials, vol. 20, no. 12, pp. 3794–3796, 2008.
[46]  S. M. Geyer, J. M. Scherer, M. G. Bawendi, and F. Jaworski, “Dual Band ultraviolet-short-wavelength imaging via luminescent down-shifting with colloidal quantum dots,” Journal of Nanophotonic, vol. 7, no. 1, Article ID 073083, 2013.
[47]  M. S. Neo, N. Venkatram, G. S. Li, W. S. Chin, and W. Ji, “Synthesis of PbS/CdS core-shell QDs and their nonlinear optical properties,” Journal of Physical Chemistry C, vol. 114, no. 42, pp. 18037–18044, 2010.
[48]  P. J. Landrigan, “Occupational and community exposures to toxic metals: Lead, cadmium, mercury and arsenic,” The Western Journal of Medicine, vol. 137, no. 6, pp. 531–539, 1982.
[49]  S. T. Selvan, T. T. Tan, and J. Y. Ying, “Robust, non-cytotoxic, silica-coated CdSe quantum dots with efficient photoluminescence,” Advanced Materials, vol. 17, no. 13, pp. 1620–1625, 2005.
[50]  R. Han, M. Yu, Q. Zheng, L. Wang, Y. Hong, and Y. Sha, “A facile synthesis of small-sized, highly photoluminescent, and monodisperse CdSeS QD/SiO2 for live cell imaging,” Langmuir, vol. 25, no. 20, pp. 12250–12255, 2009.
[51]  R. Koole, M. M. van Schooneveld, J. Hilhorst et al., “On the incorporation mechanism of hydrophobic quantum dots in silica spheres by a reverse microemulsion method,” Chemistry of Materials, vol. 20, no. 7, pp. 2503–2512, 2008.
[52]  E. D. Kosten, E. L. Warren, and H. A. Atwater, “Ray optical light trapping in silicon microwires: exceeding the 2n2 intensity limit,” Optics Express, vol. 19, no. 4, pp. 3316–3331, 2011.
[53]  S. L. Diedenhofen, O. T. A. Janssen, G. Grzela, E. P. A. M. Bakkers, and J. Gómez Rivas, “Strong geometrical dependence of the absorption of light in arrays of semiconductor nanowires,” ACS Nano, vol. 5, no. 3, pp. 2316–2323, 2011.
[54]  M. Heiss and A. Fontcuberta i Morral, “Fundamental limits in the external quantum efficiency of single nanowire solar cells,” Applied Physics Letters, vol. 99, no. 26, Article ID 263102, 2011.
[55]  D. Milam, “Review and assessment of measured values of the nonlinear refractive-index coefficient of fused silica,” Applied Optics, vol. 37, no. 3, pp. 546–550, 1998.
[56]  M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Applied Physics Letters, vol. 82, no. 18, pp. 2954–2956, 2003.
[57]  A. Villeneuve, C. C. Yang, G. I. Stegeman, C.-H. Lin, and H.-H. Lin, “Nonlinear refractive-index and two photon-absorption near half the band gap in AlGaAs,” Applied Physics Letters, vol. 62, no. 20, pp. 2465–2467, 1993.
[58]  J. T. Gopinath, M. Solja?i?, E. P. Ippen, V. N. Fuflyigin, W. A. King, and M. Shurgalin, “Third order nonlinearities in Ge-As-Se-based glasses for telecommunications applications,” Journal of Applied Physics, vol. 96, no. 11, pp. 6931–6933, 2004.
[59]  T. Vallaitis, S. Bogatscher, L. Alloatti et al., “Optical properties of highly nonlinear silicon-organic hybrid (SQH) waveguide geometries,” Optics Express, vol. 17, no. 20, pp. 17357–17368, 2009.
[60]  P. Krogstrup, H. I. J?rgensen, M. Heiss et al., “Single-nanowire solar cells beyond the Shockley-Queisser limit,” Nature Photonics, vol. 7, no. 4, pp. 306–310, 2013.
[61]  M. Hochberg and T. Baehr-Jones, “Towards fabless silicon photonics,” Nature Photonics, vol. 4, no. 8, pp. 492–494, 2010.
[62]  Z. Zhang, Silicon-based photonic devices: design, fabrication and characterization [Ph.D. thesis], Royal Institute of Technology (KTH), 2008.
[63]  C. Wagner and N. Harned, “EUV lithography: lithography gets extreme,” Nature Photonics, vol. 4, no. 1, pp. 24–26, 2010.
[64]  X. Liang, Y.-S. Jung, S. Wu et al., “Formation of bandgap and subbands in graphene nanomeshes with sub-10 nm ribbon width fabricated via nanoimprint lithography,” Nano Letters, vol. 10, no. 7, pp. 2454–2460, 2010.
[65]  V. R. Manfrinato, L. Zhang, D. Su et al., “Resolution limits of electron-beam lithography toward the atomic scale,” Nano Letters, vol. 13, no. 4, pp. 1555–1558, 2013.
[66]  J. Leuthold, W. Freude, J.-M. Brosi et al., “Silicon organic hybrid technology—a platform for practical nonlinear optics,” Proceedings of the IEEE, vol. 97, no. 7, pp. 1304–1315, 2009.
[67]  M. Lipson, “Guiding, modulating, and emitting light on silicon—challenges and opportunities,” Journal of Lightwave Technology, vol. 23, no. 12, pp. 4222–4238, 2005.
[68]  M. J. R. Heck, J. F. Bauters, M. L. Davenport et al., “Hybrid silicon photonic integrated circuit technology,” IEEE Journal on Selected Topics in Quantum Electronics, vol. 19, no. 4, Article ID 6100117, 2013.
[69]  S. Jeong, E. C. Garnett, S. Wang et al., “Hybrid silicon nanocone-polymer solar cells,” Nano Letters, vol. 12, no. 6, pp. 2971–2976, 2012.
[70]  C. Kopp, S. Bernabé, B. B. Bakir et al., “Silicon photonic circuits: on-CMOS integration, fiber optical coupling, and packaging,” IEEE Journal on Selected Topics in Quantum Electronics, vol. 17, no. 3, pp. 498–509, 2011.
[71]  D. Liang, G. Roelkens, R. Baets, and J. E. Bowers, “Hybrid integrated platforms for silicon photonics,” Materials, vol. 3, no. 3, pp. 1782–1802, 2010.
[72]  T. Hong, G.-Z. Ran, T. Chen et al., “A selective-area metal bonding InGaAsP-Si laser,” IEEE Photonics Technology Letters, vol. 22, no. 15, pp. 1141–1143, 2010.
[73]  J. Justice, C. Bower, M. Meitl, M. B. Mooney, M. A. Gubbins, and B. Corbett, “Wafer-scale integration of group III-V lasers on silicon using transfer printing of epitaxial layers,” Nature Photonics, vol. 6, no. 9, pp. 610–614, 2012.
[74]  Y. Justo, I. Moreels, K. Lambert, and Z. Hens, “Langmuir-Blodgett monolayers of colloidal lead chalcogenide quantum dots: Morphology and photoluminescence,” Nanotechnology, vol. 21, no. 29, Article ID 295606, 2010.
[75]  C. Ingrosso, V. Fakhfouri, M. Striccoli et al., “An epoxy photoresist modified by luminescent nanocrystals for the fabrication of 3D high-aspect-ratio microstructures,” Advanced Functional Materials, vol. 17, no. 13, pp. 2009–2017, 2007.
[76]  M. Wang, Lithography, InTech, 2010.
[77]  K. S. Novoselov, A. K. Geim, S. V. Morozov et al., “Electric field in atomically thin carbon films,” Science, vol. 306, no. 5696, pp. 666–669, 2004.
[78]  R. R. Nair, P. Blake, A. N. Grigorenko et al., “Fine structure constant defines visual transparency of graphene,” Science, vol. 320, no. 5881, p. 1308, 2008.
[79]  K. Kim, J.-Y. Choi, T. Kim, S.-H. Cho, and H.-J. Chung, “A role for graphene in silicon-based semiconductor devices,” Nature, vol. 479, no. 7373, pp. 338–344, 2011.
[80]  S. D. Sarma, S. Adam, E. H. Hwang, and E. Rossi, “Electronic transport in two-dimensional graphene,” Reviews of Modern Physics, vol. 83, no. 2, pp. 407–470, 2011.
[81]  T. Palacios, “Graphene electronics: thinking outside the silicon box,” Nature Nanotechnology, vol. 6, no. 8, pp. 464–465, 2011.
[82]  E. Hendry, P. J. Hale, J. Moger, A. K. Savchenko, and S. A. Mikhailov, “Coherent nonlinear optical response of graphene,” Physical Review Letters, vol. 105, no. 9, Article ID 097401, 2010.
[83]  R. Won, “Photovoltaics: graphene-silicon solar cells,” Nature Photonics, vol. 4, no. 7, p. 411, 2010.
[84]  L. Oakes, A. Westover, J. W. Mares et al., “Surface engineered porous silicon for stable, high performance electrochemical supercapacitors,” Scientific Reports, vol. 3, p. 3020, 2013.
[85]  M. Liu and X. Zhang, “Silicon photonics: graphene benefits,” Nature Photonics, vol. 7, pp. 851–852, 2013.
[86]  X. Gan, R. J. Shiue, Y. Gao et al., “Chip-integrated ultrafast graphene photodetector with high responsivity,” Nature Photonics, vol. 7, no. 11, pp. 883–887, 2013.
[87]  A. Pospischil, M. Humer, M. M. Furchi et al., “CMOS-compatible graphene photodetector covering all optical communication bands,” Nature Photonics, vol. 7, no. 11, pp. 892–896, 2013.
[88]  X. Wang, Z. Cheng, K. Xu, H. K. Tsang, and J. B. Xu, “High-responsivity graphene/silicon-heterostructure waveguide photodetectors,” Nature Photonics, vol. 7, no. 11, pp. 888–891, 2013.
[89]  F. Xia, T. Mueller, Y.-M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nature Nanotechnology, vol. 4, no. 12, pp. 839–843, 2009.
[90]  S. Y. Hong, J. I. Dadap, N. Petrone, P. C. Yeh, J. Hone, and R. M. Osgood Jr., “Optical third-harmonic generation in graphene,” Physical Review, vol. 3, Article ID 021014, 2013.
[91]  T. Gu, N. Petrone, J. F. McMillan et al., “Regenerative oscillation and four-wave mixing in graphene optoelectronics,” Nature Photonics, vol. 6, no. 8, pp. 554–559, 2012.
[92]  A. Pasquazi, M. Peccianti, Y. Park et al., “Sub-picosecond phase-sensitive optical pulse characterization on a chip,” Nature Photonics, vol. 5, no. 10, pp. 618–623, 2011.
[93]  F. Wang, Y. Zhang, C. Tian et al., “Gate-variable optical transitions in graphene,” Science, vol. 320, no. 5873, pp. 206–209, 2008.
[94]  A. Majumdar, J. Kim, J. Vuckovic, and F. Wang, “Electrical control of silicon photonic crystal cavity by graphene,” Nano Letters, vol. 13, no. 2, pp. 515–518, 2013.
[95]  Y. Jia, J. Wei, K. Wang et al., “Nanotube-silicon heterojunction solar cells,” Advanced Materials, vol. 20, no. 23, pp. 4594–4598, 2008.
[96]  A. Arena, N. Donato, G. Saitta, S. Galvagno, C. Milone, and A. Pistone, “Photovoltaic properties of multi-walled carbon nanotubes deposited on n-doped silicon,” Microelectronics Journal, vol. 39, no. 12, pp. 1659–1662, 2008.
[97]  Y. Jung, X. Li, N. K. Rajan, A. D. Taylor, and M. A. Reed, “Record high efficiency single-walled carbon nanotube/silicon p-n junction solar cells,” Nano Letters, vol. 13, no. 1, pp. 95–99, 2013.
[98]  X. Li, H. Zhu, K. Wang et al., “Graphene-on-silicon schottky junction solar cells,” Advanced Materials, vol. 22, no. 25, pp. 2743–2748, 2010.
[99]  M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 39),” Progress in Photovoltaics: Research and Applications, vol. 20, no. 1, pp. 12–20, 2012.
[100]  A. Jane, R. Dronov, A. Hodges, and N. H. Voelcker, “Porous silicon biosensors on the advance,” Trends in Biotechnology, vol. 27, no. 4, pp. 230–239, 2009.
[101]  N. Kumar, S. Gennaro, P. V. W. Sasikumar, G. D. Soraru, and P. Bettotti, “Self detachment of free-standing porous silicon membranes in moderately doped n-type silicon,” Applied Physics A, 2013.
[102]  L. Eldada and L. W. Shacklette, “Advances in polymer integrated optics,” IEEE Journal on Selected Topics in Quantum Electronics, vol. 6, no. 1, pp. 54–68, 2000.
[103]  H. Ma, A. K. Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: materials, processing, and devices,” Advanced Materials, vol. 14, no. 9, pp. 1339–1365, 2002.
[104]  Z. Zhang, N. Mettbach, C. Zawadzki et al., “Polymer-based photonic toolbox: passive components, hybrid integration and polarisation control,” IET Optoelectronics, vol. 5, no. 5, pp. 226–232, 2011.
[105]  M.-C. Oh, K.-J. Kim, W.-S. Chu et al., “Integrated photonic devices incorporating low-loss fluorinated polymer materials,” Polymers, vol. 3, no. 3, pp. 975–997, 2011.
[106]  J.-G. Liu and M. Ueda, “High refractive index polymers: fundamental research and practical applications,” Journal of Materials Chemistry, vol. 19, no. 47, pp. 8907–8919, 2009.
[107]  A. Zebda, L. Camberlein, B. Bêche et al., “Spin coating and plasma process for 2.5D integrated photonics on multilayer polymers,” Thin Solid Films, vol. 516, no. 23, pp. 8668–8674, 2008.
[108]  M. Nordstr?m, D. A. Zauner, A. Boisen, and J. Hübner, “Single-mode waveguides with SU-8 polymer core and cladding for MOEMS applications,” Journal of Lightwave Technology, vol. 25, no. 5, pp. 1284–1289, 2007.
[109]  S.-W. Ahn, K.-D. Lee, D.-H. Kim, and S.-S. Lee, “Polymeric wavelength filter based on a Bragg grating using nanoimprint technique,” IEEE Photonics Technology Letters, vol. 17, no. 10, pp. 2122–2124, 2005.
[110]  R. Kirchner, M.-K. Kaiser, B. Adolphi, R. Landgraf, and W.-J. Fischer, “Chemical functional polymers for direct UV assisted nanoimprinting of polymeric photonic microring resonators,” Physica Status Solidi A, vol. 208, no. 6, pp. 1308–1314, 2011.
[111]  L. Li, E. Gershgoren, G. Kumi et al., “High-performance microring resonators fabricated with multiphoton absorption polymerization,” Advanced Materials, vol. 20, no. 19, pp. 3668–3671, 2008.
[112]  J. Luo and A. K. Y. Jen, “Highly efficient organic electrooptic materials and their hybrid systems for advanced photonic devices,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 19, no. 6, Article ID 3401012, 2013.
[113]  L. Yin and G. P. Agrawal, “Impact of two-photon absorption on self-phase modulation in silicon waveguides,” Optics Letters, vol. 32, no. 14, pp. 2031–2033, 2007.
[114]  A. D. Bristow, N. Rotenberg, and H. M. van Driel, “Two-photon absorption and Kerr coefficients of silicon for 850-2200 nm,” Applied Physics Letters, vol. 90, no. 19, Article ID 191104, 2007.
[115]  M.-C. Oh, H. Zhang, A. Szep et al., “Electro-optic polymer modulators for 1.55 μm wavelength using phenyltetraene bridged chromophore in polycarbonate,” Applied Physics Letters, vol. 76, no. 24, pp. 3525–3527, 2000.
[116]  G. Yu, J. Mallari, H. Shen et al., “40GHz zero chirp single-ended EO polymer modulators with low half-wave voltage,” in Proceedings of the Conference on Lasers and Electro-Optics (CLEO '11), Baltimore, Md, USA, May 2011.
[117]  X. Zhang, A. Hosseini, X. Lin, H. Subbaraman, and R. T. Chen, “Polymer-based hybrid-integrated photonic devices for silicon on-chip modulation and board-level optical interconnects,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 19, no. 6, Article ID 3401115, 2013.
[118]  R. Dinu, D. Jin, G. Yu et al., “Environmental stress testing of electro-optic polymer modulators,” Journal of Lightwave Technology, vol. 27, no. 11, pp. 1527–1532, 2009.
[119]  D. Jin, H. Chen, A. Barklund et al., “EO polymer modulators reliability study,” in Organic Photonic Materials and Devices XII, R. L. Nelson, F. Kajzar, and T. Kaino, Eds., vol. 7599 of Proceedings of SPIE, January 2010.
[120]  J. Luo, S. Huang, Z. Shi, B. M. Polishak, X.-H. Zhou, and A. K.-Y. Jen, “Tailored organic electro-optic materials and their hybrid systems for device applications,” Chemistry of Materials, vol. 23, no. 3, pp. 544–553, 2011.
[121]  C.-Y. Lin, X. Wang, S. Chakravarty et al., “Electro-optic polymer infiltrated silicon photonic crystal slot waveguide modulator with 23 dB slow light enhancement,” Applied Physics Letters, vol. 97, no. 9, Article ID 093304, 2010.
[122]  C. Koos, P. Vorreau, T. Vallaitis et al., “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nature Photonics, vol. 3, no. 4, pp. 216–219, 2009.
[123]  S. Inoue and A. Otomo, “Electro-optic polymer/silicon hybrid slow light modulator based on one-dimensional photonic crystal waveguides,” Applied Physics Letters, vol. 103, no. 17, Article ID 171101, 2013.
[124]  J. Leuthold, C. Koos, W. Freude et al., “Silicon-organic hybrid electro-optical devices,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 19, no. 6, Article ID 3401413, 2013.
[125]  V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Optics Letters, vol. 29, no. 11, pp. 1209–1211, 2004.
[126]  J. T. Robinson, K. Preston, O. Painter, and M. Lipson, “First-principle derivation of gain in high-index-contrast waveguides,” Optics Express, vol. 16, no. 21, pp. 16659–16669, 2008.
[127]  P. Bettotti, A. Pitanti, E. Rigo, F. de Leonardis, V. M. N. Passaro, and L. Pavesi, “Modeling of slot waveguide sensors based on polymeric materials,” Sensors, vol. 11, no. 8, pp. 7327–7340, 2011.
[128]  L. Alloatti, D. Korn, R. Palmer et al., “7 Gbit/s electro-optic modulator in silicon technology,” Optics Express, vol. 19, no. 12, pp. 11841–11851, 2011.
[129]  J.-M. Brosi, C. Koos, L. C. Andreani, M. Waldow, J. Leuthold, and W. Freude, “High-speed low-voltage electro-optic modulator with a polymer-infiltrated silicon photonic crystal waveguide,” Optics Express, vol. 16, no. 6, pp. 4177–4191, 2008.
[130]  I. A. Young, E. Mohammed, J. T. S. Liao et al., “Optical I/O technology for tera-scale computing,” IEEE Journal of Solid-State Circuits, vol. 45, no. 1, pp. 235–248, 2010.
[131]  R. Palmer, L. Alloatti, D. Korn et al., “Low-loss silicon strip-to-slot mode converters,” IEEE Photonics Journal, vol. 5, no. 1, pp. 1226–1229, 2013.
[132]  Y.-O. Noh, C.-H. Lee, J.-M. Kim et al., “Polymer waveguide variable optical attenuator and its reliability,” Optics Communications, vol. 242, no. 4–6, pp. 533–540, 2004.
[133]  S.-H. Park, J.-W. Kim, M.-C. Oh, Y.-O. Noh, and H.-J. Lee, “Polymer waveguide birefringence modulators,” IEEE Photonics Technology Letters, vol. 24, no. 10, pp. 845–847, 2012.
[134]  V. Raghunathan, J. L. Yagüe, J. Xu, J. Michel, K. K. Gleason, and L. C. Kimerling, “Co-polymer clad design for high performance athermal photonic circuits,” Optics Express, vol. 20, no. 19, pp. 20808–20813, 2012.
[135]  Y. Kokubun, S. Yoneda, and H. Tanaka, “Temperature-independent narrowband optical filter at 1.31 μm wavelength by an athermal waveguide,” Electronics Letters, vol. 32, no. 21, pp. 1998–2000, 1996.
[136]  J.-M. Lee, D.-J. Kim, H. Ahn, S.-H. Park, and G. Kim, “Temperature dependence of silicon nanophotonic ring resonator with a polymeric overlayer,” Journal of Lightwave Technology, vol. 25, no. 8, pp. 2236–2243, 2007.
[137]  J.-M. Lee, D.-J. Kim, G.-H. Kim, O.-K. Kwon, K.-J. Kim, and G. Kim, “Controlling temperature dependence of silicon waveguide using slot structure,” Optics Express, vol. 16, no. 3, pp. 1645–1652, 2008.
[138]  J. Teng, P. Dumon, W. Bogaerts et al., “Athermal Silicon-on-insulator ring resonators by overlaying a polymer cladding on narrowed waveguides,” Optics Express, vol. 17, no. 17, pp. 14627–14633, 2009.
[139]  J. Pfeifle, L. Alloatti, W. Freude, J. Leuthold, and C. Koos, “Silicon-organic hybrid phase shifter based on a slot waveguide with a liquid-crystal cladding,” Optics Express, vol. 20, no. 14, pp. 15359–15376, 2012.
[140]  S. Yokoyama, F. Qiu, Y. Feng, A. M. Spring, and K. Yamamoto, “0. 018pm/°C athermal silicon nitride ring resonator by polymer cladding,” in Proceedings of the Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR '13), Kyoto, Japan, 2013.
[141]  V. Raghunathan, T. Izuhara, J. Michel, and L. Kimerling, “Stability of polymer-dielectric bi-layers for athermal silicon photonics,” Optics Express, vol. 20, no. 14, pp. 16059–16066, 2012.
[142]  K. S. Hsu, T. T. Chiu, P. T. Lee, and M. H. Shih, “Wavelength tuning by bending a flexible photonic crystal laser,” Journal of Lightwave Technology, vol. 31, no. 12, pp. 1960–1964, 2013.
[143]  Y.-O. Noh, H.-J. Lee, N. J. Ju, M.-S. Kim, S. H. Oh, and M.-C. Oh, “Continuously tunable compact lasers based on thermo-optic polymer waveguides with Bragg gratings,” Optics Express, vol. 16, no. 22, pp. 18194–18195, 2008.
[144]  K.-J. Kim, J.-W. Kim, M.-C. Oh, Y.-O. Noh, and H.-J. Lee, “Flexible polymer waveguide tunable lasers,” Optics Express, vol. 18, no. 8, pp. 8392–8399, 2010.
[145]  F. Ebisawa, T. Kurokawa, and S. Nara, “Electrical properties of polyacetylene/polysiloxane interface,” Journal of Applied Physics, vol. 54, no. 6, pp. 3255–3259, 1983.
[146]  K. Kudo, M. Yamashina, and T. Moriizumi, “Field effect measurement of organic dye films,” Japanese Journal of Applied Physics, vol. 23, no. 1, pp. 130–130, 1984.
[147]  A. Tsumura, H. Koezuka, and T. Ando, “Macromolecular electronic device: field-effect transistor with a polythiophene thin film,” Applied Physics Letters, vol. 49, no. 18, pp. 1210–1212, 1986.
[148]  W.-Y. Chou, S.-T. Lin, H.-L. Cheng et al., “Polymer light-emitting diodes with thermal inkjet printed poly(3,4-ethylenedioxythiophene):polystyrenesulfonate as transparent anode,” Thin Solid Films, vol. 515, no. 7-8, pp. 3718–3723, 2007.
[149]  D.-H. Lee, J. S. Choi, H. Chae, C.-H. Chung, and S. M. Cho, “Screen-printed white OLED based on polystyrene as a host polymer,” Current Applied Physics, vol. 9, no. 1, pp. 161–164, 2009.
[150]  A. Takakuwa, M. Misaki, Y. Yoshida, and K. Yase, “Micropatterning of emitting layers by microcontact printing and application to organic light-emitting diodes,” Thin Solid Films, vol. 518, no. 2, pp. 555–558, 2009.
[151]  S. Logothetidis, “Flexible organic electronic devices: materials, process and applications,” Materials Science and Engineering B: Solid-State Materials for Advanced Technology, vol. 152, no. 1–3, pp. 96–104, 2008.
[152]  Z. Bao and J. Locklin, Eds., Organic Field-Effect Transistors, CRC Press, 2007.
[153]  P. Gomez-Romero and C. Sanchez, Eds., Functional Hybrid Materials, Wiley-VCH, 2004.
[154]  C. W. Tang and S. A. vanslyke, “Organic electroluminescent diodes,” Applied Physics Letters, vol. 51, no. 12, pp. 913–915, 1987.
[155]  S. R. Forrest, “The path to ubiquitous and low-cost organic electronic appliances on plastic,” Nature, vol. 428, no. 6986, pp. 911–918, 2004.
[156]  S. Dasgupta, G. Stoesser, N. Schweikert et al., “Printed and electrochemically gated, high-mobility, inorganic oxide nanoparticle FETs and their suitability for high-frequency applications,” Advanced Functional Materials, vol. 22, no. 23, pp. 4909–4919, 2012.
[157]  M. J?rgensen, K. Norrman, S. A. Gevorgyan, T. Tromholt, B. Andreasen, and F. C. Krebs, “Stability of polymer solar cells,” Advanced Materials, vol. 24, no. 5, pp. 580–612, 2012.
[158]  A. Mishra and P. B?uerle, “Small molecule organic semiconductors on the move: promises for future solar energy technology,” Angewandte Chemie: International Edition, vol. 51, no. 9, pp. 2020–2067, 2012.
[159]  X. Xu, M. Davanco, X. Qi, and S. R. Forrest, “Direct transfer patterning on three dimensionally deformed surfaces at micrometer resolutions and its application to hemispherical focal plane detector arrays,” Organic Electronics, vol. 9, no. 6, pp. 1122–1127, 2008.
[160]  R. Li, L. Jiang, Q. Meng et al., “Micrometer-sized organic single crystals, anisotropic transport, and field-effect transistors of a fused-ring thienoacene,” Advanced Materials, vol. 21, no. 44, pp. 4492–4495, 2009.
[161]  Y. Wu, P. Liu, B. S. Ong et al., “Controlled orientation of liquid-crystalline polythiophene semiconductors for high-performance organic thin-film transistors,” Applied Physics Letters, vol. 86, no. 14, Article ID 142102, pp. 1–3, 2005.
[162]  L. Li, Q. Tang, H. Li et al., “An ultra closely π-stacked organic semiconductor for high performance field-effect transistors,” Advanced Materials, vol. 19, no. 18, pp. 2613–2617, 2007.
[163]  T. Toccoli, M. Tonezzer, P. Bettotti et al., “Supersonic molecular beams deposition of α-quaterthiophene: Enhanced growth control and devices performances,” Organic Electronics, vol. 10, no. 3, pp. 521–526, 2009.
[164]  M. Tonezzer, E. Rigo, S. Gottardi et al., “Role of kinetic energy of impinging molecules in the α-sexithiophene growth,” Thin Solid Films, vol. 519, no. 12, pp. 4110–4113, 2011.
[165]  S. Gottardi, T. Toccoli, S. Iannotta et al., “Optimizing picene molecular assembling by supersonic molecular beam deposition,” Journal of Physical Chemistry C, vol. 116, no. 46, pp. 24503–24511, 2012.
[166]  H. Antoniadis, M. A. Abkowitz, and B. R. Hsieh, “Carrier deep-trapping mobility-lifetime products in poly(p-phenylene vinylene),” Applied Physics Letters, vol. 65, no. 16, pp. 2030–2032, 1994.
[167]  M. Chikamatsu, T. Mikami, J. Chisaka et al., “Ambipolar organic field-effect transistors based on a low band gap semiconductor with balanced hole and electron mobilities,” Applied Physics Letters, vol. 91, no. 4, Article ID 043506, 2007.
[168]  C.-Y. Yang, S.-S. Cheng, C.-W. Ou, Y.-C. Chuang, M.-C. Wu, and C.-W. Chu, “Balancing the ambipolar conduction for pentacene thin film transistors through bifunctional electrodes,” Applied Physics Letters, vol. 92, no. 25, Article ID 253307, 2008.
[169]  S. Reineke, F. Lindner, G. Schwartz et al., “White organic light-emitting diodes with fluorescent tube efficiency,” Nature, vol. 459, no. 7244, pp. 234–238, 2009.
[170]  R. Meerheim, M. Furno, S. Hofmann, B. Lüssem, and K. Leo, “Quantification of energy loss mechanisms in organic light-emitting diodes,” Applied Physics Letters, vol. 97, no. 25, Article ID 253305, 2010.
[171]  H. Sasabe, T. Chiba, S.-J. Su, Y.-J. Pu, K.-I. Nakayama, and J. Kido, “2-Phenylpyrimidine skeleton-based electron-transport materials for extremely efficient green organic light-emitting devices,” Chemical Communications, no. 44, pp. 5821–5823, 2008.
[172]  S.-J. Su, D. Tanaka, Y.-J. Li, H. Sasabe, T. Takeda, and J. Kido, “Novel four-pyridylbenzene-armed biphenyls as electron-transport materials for phosphorescent OLEDs,” Organic Letters, vol. 10, no. 5, pp. 941–944, 2008.
[173]  S.-J. Su, E. Gonmori, H. Sasabe, and J. Kido, “Highly efficient organic blue-and white-light-emitting devices having a carrier- And exciton-confining structure for reduced efficiency roll-off,” Advanced Materials, vol. 20, no. 21, pp. 4189–4194, 2008.
[174]  L. Xiao, S.-J. Su, Y. Agata, H. Lan, and J. Kido, “Nearly 100% internal quantum efficiency in an organic blue-light electrophosphorescent device using a weak electron transporting material with a wide energy gap,” Advanced Materials, vol. 21, no. 12, pp. 1271–1274, 2009.
[175]  F. Laquai, Y.-S. Park, J.-J. Kim, and T. Basché, “Excitation energy transfer in organic materials: From fundamentals to optoelectronic devices,” Macromolecular Rapid Communications, vol. 30, no. 14, pp. 1203–1231, 2009.
[176]  A. K?ler and H. B?ssler, “Triplet states in organic semiconductors,” Materials Science and Engineering R: Reports, vol. 66, no. 4–6, pp. 71–109, 2009.
[177]  S. Chénais and S. Forget, “Recent advances in solid-state organic lasers,” Polymer International, vol. 61, no. 3, pp. 390–406, 2012.
[178]  A. Buckley, Ed., Organic Light Emitting Diodes, Woodhead, 2013.
[179]  D. Yan, H. Wang, and B. Du, Introduction to Organic seniconductor Heterojunctions, John Wiley & Sons, 2010.
[180]  J. A. Rogers, Z. Bao, K. Baldwin et al., “Paper-like electronic displays: Large-area rubber-stamped plastic sheets of electronics and microencapsulated electrophoretic inks,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 9, pp. 4835–4840, 2001.
[181]  C. D. Sheraw, L. Zhou, J. R. Huang et al., “Organic thin-film transistor-driven polymer-dispersed liquid crystal displays on flexible polymeric substrates,” Applied Physics Letters, vol. 80, no. 6, pp. 1088–1090, 2002.
[182]  H. Kawaguchi, T. Someya, T. Sekitani, and T. Sakurai, “Cut-and-paste customization of organic FET integrated circuit and its application to electronic artificial skin,” IEEE Journal of Solid-State Circuits, vol. 40, no. 1, pp. 177–185, 2005.
[183]  P. F. Baude, D. A. Ender, M. A. Haase, T. W. Kelley, D. V. Muyres, and S. D. Theiss, “Pentacene-based radio-frequency identification circuitry,” Applied Physics Letters, vol. 82, no. 22, pp. 3964–3966, 2003.
[184]  K. Myny, S. van Winckel, S. Steudel et al., “An inductively-coupled 64b organic RFID tag operating at 13.56MHz with a data rate of 787b/s,” in Proceedings of the IEEE International Solid State Circuits Conference (ISSCC '08), pp. 285–614, February 2008.
[185]  Y. Ohmori, M. Hikita, H. Kajii et al., “Organic electroluminescent diodes as a light source for polymeric waveguides toward organic integrated optical devices,” Thin Solid Films, vol. 393, no. 1-2, pp. 267–272, 2001.
[186]  Y. Ohmori, H. Kajii, M. Kaneko et al., “Realization of polymeric optical integrated devices utilizing organic light-emitting diodes and photodetectors fabricated on a polymeric waveguide,” IEEE Journal on Selected Topics in Quantum Electronics, vol. 10, no. 1, pp. 70–78, 2004.
[187]  M. C. Gather, F. Ventsch, and K. Meerholz, “Embedding organic light-emitting diodes into channel waveguide structures,” Advanced Materials, vol. 20, no. 10, pp. 1966–1971, 2008.
[188]  M. C. Gwinner, S. Khodabakhsh, M. H. Song, H. Schweizer, H. Giessen, and H. Sirringhaus, “Integration of a rib waveguide distributed feedback structure into a light-emitting polymer field-effect transistor,” Advanced Functional Materials, vol. 19, no. 9, pp. 1360–1370, 2009.
[189]  S. Sakka, Handbook of Sol-Gel Science and Technology, Kluwer Academic, 2005.
[190]  C. J. Brinker and G. W. Scherer, Sol-Gel Science, Academic Press, San Diego, Calif, USA, 1990.
[191]  G. D. Sorarù, S. Modena, P. Bettotti, G. Das, G. Mariotto, and L. Pavesi, “Si nanocrystals obtained through polymer pyrolysis,” Applied Physics Letters, vol. 83, no. 4, pp. 749–751, 2003.
[192]  G. Das, L. Ferraioli, P. Bettotti et al., “Si-nanocrystals/SiO2 thin films obtained by pyrolysis of sol-gel precursors,” Thin Solid Films, vol. 516, no. 20, pp. 6804–6807, 2008.
[193]  E. J. Henderson, J. A. Kelly, and J. G. C. Veinot, “Influence of HSiO1.5 sol-gel polymer structure and composition on the size and luminescent properties of silicon nanocrystals,” Chemistry of Materials, vol. 21, no. 22, pp. 5426–5434, 2009.
[194]  A. Karakuscu, R. Guider, L. Pavesi, and G. D. Sorarù, “White luminescence from sol-gel-derived SiOC thin films,” Journal of the American Ceramic Society, vol. 92, no. 12, pp. 2969–2974, 2009.
[195]  C. Chen, C. Han, L. Wang et al., “650-nm all-polymer thermo-optic waveguide switch arrays based on novel organic-inorganic grafting PMMA materials,” IEEE Journal of Quantum Electronics, vol. 49, no. 5, pp. 447–453, 2013.
[196]  X. Zhang, M. Qian, X. Zeng, Z. Zhao, J. Lasante, and P. Plante, “Design and fabrication of single mode rib waveguides using sol-gel derived organic-inorganic hybrid materials,” Journal of Sol-Gel Science and Technology, vol. 45, no. 1, pp. 103–107, 2008.
[197]  C. Y. Jia, W. Que, and W. G. Liu, “Preparation and optical properties of sol-gel derived photo-patternable organic-inorganic hybrid films for optical waveguide applications,” Thin Solid Films, vol. 518, no. 1, pp. 290–294, 2009.
[198]  P. Karasiński, C. Tyszkiewicz, R. Rogoziński, and J. Jaglarz, “Optical rib waveguides based on sol-gel derived silica-titania films,” Thin Solid Films, vol. 519, no. 16, pp. 5544–5551, 2011.
[199]  S. Krivec, N. Matsko, V. Satzinger et al., “Silica-based, organically modified host material for waveguide structuring by two-photon-induced photopolymerization,” Advanced Functional Materials, vol. 20, no. 5, pp. 811–819, 2010.
[200]  X. Zhang, W. Que, J. Chen, T. Gao, J. Hu, and W. Liu, “Fabrication of ridge waveguide structure from photosensitive TiO 2/ormosil hybrid films by using an ultraviolet soft imprint technique,” Thin Solid Films, vol. 531, pp. 119–124, 2013.
[201]  R. A. S. Ferreira, P. S. André, and L. D. Carlos, “Organic-inorganic hybrid materials towards passive and active architectures for the next generation of optical networks,” Optical Materials, vol. 32, no. 11, pp. 1397–1409, 2010.
[202]  Y. Enami, C. T. Derose, D. Mathine et al., “Hybrid polymersol-gel waveguide modulators with exceptionally large electro-optic coefficients,” Nature Photonics, vol. 1, no. 3, pp. 180–185, 2007.
[203]  Y. Enami, D. Mathine, C. T. Derose et al., “Hybrid electro-optic polymer/sol-gel waveguide directional coupler switches,” Applied Physics Letters, vol. 94, no. 21, Article ID 213513, 2009.
[204]  D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature, vol. 442, no. 7101, pp. 381–386, 2006.
[205]  F. Intonti, S. Vignolini, V. Türck et al., “Rewritable photonic circuits,” Applied Physics Letters, vol. 89, no. 21, Article ID 211117, 2006.
[206]  S.-W. Hwang, H. Tao, D.-H. Kim et al., “A physically transient form of silicon electronics,” Science, vol. 337, no. 6102, pp. 1640–1644, 2012.
[207]  M. Irimia-Vladuab, “Green electronics: biodegradable and biocompatible materials and devices for sustainable future,” Chemical Society Review, vol. 43, no. 2, pp. 588–610, 2014.
[208]  H. Tao, M. A. Brenckle, M. Yang et al., “Silk-based conformal, adhesive, edible food sensors,” Advanced Materials, vol. 24, no. 8, pp. 1067–1072, 2012.
[209]  B. D. Lawrence, M. Cronin-Golomb, I. Georgakoudi, D. L. Kaplan, and F. G. Omenetto, “Bioactive silk protein biomaterial systems for optical devices,” Biomacromolecules, vol. 9, no. 4, pp. 1214–1220, 2008.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133