全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Evaluating the Reproducibility of Motion Analysis Scanning of the Spine during Walking

DOI: 10.1155/2014/721829

Full-Text   Cite this paper   Add to My Lib

Abstract:

The Formetric 4D dynamic system (Diers International GmbH, Schlangenbad, Germany) is a rasterstereography based imaging system designed to evaluate spinal deformity, providing radiation-free imaging of the position, rotation, and shape of the spine during the gait cycle. Purpose. This study was designed to evaluate whether repeated measurements with the Formetric 4D dynamic system would be reproducible with a standard deviation of less than +/? 3 degrees. This study looked at real-time segmental motion, measuring kyphosis, lordosis, trunk length, pelvic, and T4 and L1 vertebral body rotation. Methods. Twenty healthy volunteers each underwent 3 consecutive scans. Measurements for kyphosis, lordosis, trunk length, and rotations of T4, L1, and the pelvis were recorded for each trial. Results. The average standard deviations of same-day repeat measurements were within +/? 3 degrees with a range of 0.51 degrees to 2.3 degrees. Conclusions. The surface topography system calculated reproducible measurements with error ranges comparable to the current gold standard in dynamic spinal motion analysis. Therefore, this technique should be considered of high clinical value for reliably evaluating segmental motion and spinal curvatures and should further be evaluated in the setting of adolescent idiopathic scoliosis. 1. Introduction Adolescent idiopathic scoliosis (AIS) is a common condition affecting between 2 and 4 percent, or an estimated 6 million adolescents, in the United States [1]. Frequent assessment and monitoring of this patient population are necessary to determine an individual’s progression of spinal deformity. Healthcare providers most often use spinal radiographs as the standard-of-care for evaluation. X-rays currently offer the most reliable way to quantify the magnitude of the curve but have the disadvantages of exposing patients to harmful radiation. Nash et al. reported that over a three-year period, a group of teenage girls with AIS underwent an average of 22 radiographs [2]. Ronckers et al. found cancer mortality to be 8 percent higher than expected in patients with repeated radiographs for scoliosis, as well as a four times greater relative risk of breast cancer in female patients with spinal disorders [3]. Surface topography is the study of the three-dimensional shape of the surface of the back. Measurement systems using surface topography do not involve exposure to ionizing radiation and are therefore completely safe [4]. According to a study by Knott et al., if surface topography can deliver reliable results, then it should replace

References

[1]  B. Reamy and J. B. Slakey, “Adolescent idiopathic scoliosis: review and current concepts,” American Family Physician, vol. 64, p. 111, 2001.
[2]  C. L. Nash Jr., E. C. Gregg, R. H. Brown, and K. Pillai, “Risks of exposure to X-rays in patients undergoing long-term treatment for scoliosis,” The Journal of Bone and Joint Surgery, vol. 61, no. 3, pp. 371–374, 1979.
[3]  C. M. Ronckers, C. E. Land, J. S. Miller, M. Stovall, J. E. Lonstein, and M.M. Doody, “Cancer mortality among women frequently exposed to radiographic examinations for spinal disorders,” Radiation Research, vol. 174, no. 1, pp. 83–90, 2010.
[4]  N. J. Oxborrow, “Assessing the child with scoliosis: the role of surface topography,” Archives of Disease in Childhood, vol. 83, pp. 453–455, 2000.
[5]  P. Knott, S. Mardjetko, M. Rollet, S. Baute, M. Riemenschneider, and L. Muncie, “Evaluation of the reproducibility of the formetric 4D measurements for scoliosis,” Scoliosis, vol. 5, article O10, 2010.
[6]  J. D. Pearson, P. H. Dangerfield, J. T. Atkinson et al., “Measurement of body surface topography using an automated imaging system,” Acta Orthopaedica Belgica, vol. 58, supplement 1, pp. 73–79, 1992.
[7]  M. Batouche, R. Benlamri, and M. K. Kholladi, “A computer vision system for diagnosing scoliosis using moiré images,” Computers in Biology and Medicine, vol. 26, no. 4, pp. 33–53, 1996.
[8]  A. M. Macdonald, C. J. Griffiths, F. J. MacArdle, and M. J. Gibson, “The effect of posture on Quantec measurements,” Studies in Health Technology and Informatics, vol. 91, pp. 190–193, 2002.
[9]  D. L. Hill, D. C. Berg, V. J. Raso et al., “Evaluation of a laser scanner for surface topography,” Studies in Health Technology and Informatics, vol. 88, pp. 90–94, 2002.
[10]  S. Treuillet, Y. Lucas, G. Crepin, B. Peuchot, and J. C. Pichaud, “SYDESCO: a laser-video scanner for 3D scoliosis evaluations,” Studies in Health Technology and Informatics, vol. 88, pp. 70–73, 2002.
[11]  X. C. Liu, J. G. Thometz, R. M. Lyon, and L. McGrady, “Effects of trunk position on back surface-contour measured by raster stereophotography,” The American Journal of Orthopedics, vol. 31, no. 7, pp. 402–406, 2002.
[12]  V. Pazos, F. Cheriet, L. Song, H. Labelle, and J. Dansereau, “Accuracy assessment of human trunk surface 3D reconstructions from an optical digitizing system,” Medical & Biological Engineering & Computing, vol. 43, no. 1, pp. 11–15, 2005.
[13]  P. Knott, S. Mardjetko, D. Nance, and M. Dunn, “Electromagnetic topographical technique of curve evaluation for adolescent idiopathic scoliosis,” Spine, vol. 31, no. 24, pp. E911–E916, 2006.
[14]  C. J. Goldberg, D. Grove, D. P. Moore, E. E. Fogarty, and F. E. Dowling, “Surface Topography and vectors: a new measure for the three dimensional quantification of scoliotic deformity,” Studies in Health Technology and Informatics, vol. 123, pp. 449–455, 2006.
[15]  H. Mitchell, S. Pritchard, and D. Hill, “Surface alignment to unmask scoliotic deformity in surface topography,” Studies in Health Technology and Informatics, vol. 123, pp. 109–116, 2006.
[16]  A. Zubovic, N. Davies, F. Berryman et al., “New method of scoliosis deformity assessment: ISIS2 system,” Studies in Health Technology and Informatics, vol. 140, pp. 157–160, 2008.
[17]  T. M. Shannon, “Development of an apparatus to evaluate Adolescent Idiopathic Scoliosis by dynamic surface topography,” Studies in Health Technology and Informatics, vol. 140, pp. 121–127, 2008.
[18]  F. Berryman, P. Pynsent, and J. Fairbank, “Measuring the rib hump in scoliosis with ISIS2,” Studies in Health Technology and Informatics, vol. 140, pp. 65–67, 2008.
[19]  C. Fortin, D. E. Feldman, F. Cherlet, and H. Labelle, “Validity of a quantitative clinical measurement tool of trunk posture in idiopathic scoliosis,” Spine, vol. 35, no. 19, pp. E988–E994, 2010.
[20]  E. C. Parent, S. Damaraju, D. L. Hill, E. Lou, and D. Smetaniuk, “Identifying the best surface topography parameters for detecting idiopathic scoliosis curve progression,” Studies in Health Technology and Informatics, vol. 158, pp. 78–82, 2010.
[21]  J. M. Frerich, K. Hertzler, P. Knott, and S. Mardjetko, “Comparison of radiographic and surface topography measurements in adolescents with scoliosis,” The Open Orthopaedic Journal, vol. 6, pp. 261–265, 2012.
[22]  C. Goodvin, E. J. Park, K. Huang, and K. Sakaki, “Development of a real-time three-dimensional spinal motion measurement system for clinical practice,” Medical Biological Engineering & Computing, vol. 44, pp. 1061–1075, 2006.
[23]  J. L. McGinley, R. Baker, R. Wolfe, and M. Morris, “The reliability of three-dimensional kinematic gait measurements: a systematic review,” Gait & Posture, vol. 29, no. 3, pp. 360–369, 2009.
[24]  P. Knott, S. Mardjetko, and S. Thompson, “A comparison of automatic vs. manual detection of anatomical landmarks during surface topography evaluation using the formetric 4D system,” Scoliosis, vol. 7, supplement 1, article O19, 2012.
[25]  P. Knott, S. Mardjetko, D. Tager, R. Hund, and S. Thompson, “The influence of body mass index (BMI) on the reproducibility of surface topography measurements,” Scoliosis, vol. 7, supplement 1, p. O18, 2012.
[26]  H. R. Weiss and S. Seibel, “Can surface topography replace radiography in the management of patients with scoliosis?” Hard Tissue, vol. 2, no. 2, article 19, 2013.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133