A series of isonicotinoyl hydrazones have been synthesized via template method and were complexed to Cu(II). The ligands are coordinated to Cu(II) ion through the enolic oxygen and azomethine nitrogen resulting in a square planar geometry. The CT-DNA and bovine serum albumin binding propensities of the compounds were determined spectrophotometrically, the results of which indicate good binding propensity of complexes to DNA and BSA with high binding constant values. Furthermore, the compounds have been investigated for their cytotoxicities on A549 human lung cancer cell. Also the mode of cell death was examined employing various staining techniques and was found to be apoptotic. 1. Introduction A wide range of Schiff’s bases with their reactive azomethine linkage show interesting inhibitory activity against tumor cells. Schiff’s bases could be hydrolyzed selectively by the tumor cells to act as alkylating agents; at the same time the active amine becomes free to act as antimetabolite [1]. Studies show that the metal complexes of Schiff’s base ligands have better antimicrobial and anticancer activities as compared to Schiff’s bases [2]. Copper is well known as a bioessential element and its complexes have proven to be excellent candidates for biological applications due to their binding ability and positive redox potential [3–6]. Cu(II) complexes containing heterocyclic bases have been extensively explored in virtue of their strong interactions with DNA and cytotoxic activity [7–9]. They can act as chemical nucleases [10, 11] and their cytotoxicity has been proposed to be caused by their ability to bind and cleave DNA that leads to cell cycle arrest and apoptosis or generation of reactive oxygen species (ROS) that in turn leads to cell death [12]. Literature has shown that Cu(II)-based complexes exhibit antineoplastic potency towards human ovarian carcinoma (CH1), murine leukemia (L1210), and various cervicouterine carcinomas which is comparable to or even higher than that of cisplatin [13, 14]. Fei et al. in their article [15] have reported the in vitro cytotoxicity of two copper-2,2′-bipyridine complexes towards five selected tumor cell lines HepG-2, HeLa, NCI-H460, MCF-7, and HL-6 with IC50 value at a concentration of 50?μM. Cu(II) complexes of Schiff bases can show their antibacterial and antiproliferative activities because of the properties of the metal center or the coordinated ligands alone, as well as the structural and electronic properties which is ascribed to the coordination [16–21]. Several Schiff base ligands and their Cu(II) complexes
References
[1]
M. M. Kamel, H. I. Ali, M. M. Anwar, N. A. Mohameda, and M. Soliman, “Synthesis, antitumor activity and molecular docking study of novel sulfonamide-Schiff's bases, thiazolidinones, benzothiazinones and their C-nucleoside derivatives,” European Journal of Medicinal Chemistry, vol. 45, no. 2, pp. 572–580, 2010.
[2]
B. S. Creaven, B. Duff, D. A. Egan et al., “Anticancer and antifungal activity of copper(II) complexes of quinolin-2(1H)-one-derived Schiff bases,” Inorganica Chimica Acta, vol. 363, no. 14, pp. 4048–4058, 2010.
[3]
D. R. Green and J. C. Reed, “Mitochondria and apoptosis,” Science, vol. 281, no. 5381, pp. 1309–1312, 1998.
[4]
Y. Ma, L. Cao, T. Kavabata, T. Yoshino, B. B. Yang, and S. Okada, “Cupric nitrilotriacetate induces oxidative DNA damage and apoptosis in human leukemia HL-60 cells,” Free Radical Biology and Medicine, vol. 25, no. 4-5, pp. 568–575, 1998.
[5]
F. Liang, C. Wu, H. Lin et al., “Copper complex of hydroxyl-substituted triazamacrocyclic ligand and its antitumor activity,” Bioorganic and Medicinal Chemistry Letters, vol. 13, pp. 2469–2472, 2003.
[6]
E. L. Hegg and J. N. Burstyn, “Toward the development of metal-based synthetic nucleases and peptidases: a rationale and progress report in applying the principles of coordination chemistry,” Coordination Chemistry Reviews, vol. 173, no. 1, pp. 133–165, 1998.
[7]
D. Kannan and M. N. Arumugham, “Synthesis, characterisation, DNA-binding studies and antimicrobial activity of copper(II) complex with 1,10 phenanthroline, L-tyrosine and thiourea as ligands,” International Journal of Research in Controlled Release, vol. 2, p. 10, 2012.
[8]
S. Dhar, D. Senapati, P. K. Das, P. Chattopadhyay, M. Nethaji, and A. R. Chakravarty, “Ternary copper complexes for photocleavage of DNA by red light: direct evidence for sulfur-to-copper charge transfer and d-d band involvement,” Journal of the American Chemical Society, vol. 125, no. 40, pp. 12118–12124, 2003.
[9]
S. Dhar, P. A. N. Reddy, M. Nethaji, S. Mahadevan, M. K. Saha, and A. R. Chakravarty, “Effect of steric encumbrance of tris(3-phenylpyrazolyl)borate on the structure and properties of ternary copper(II) complexes having N,N-donor heterocyclic bases,” Inorganic Chemistry, vol. 41, no. 13, pp. 3469–3476, 2002.
[10]
A. R. Chakravarty, P. A. N. Reddy, B. K. Santra, and A. M. Thomas, “Copper complexes as chemical nucleases,” Journal of Chemical Sciences—Indian Academy of Sciences, vol. 114, pp. 391–401, 2002.
[11]
S. Zhang, Y. Zhu, T. Chao et al., “A novel cytotoxic ternary copper(II) complex of 1,10-phenanthroline and l-threonine with DNA nuclease activity,” Journal of Inorganic Biochemistry, vol. 98, no. 12, pp. 2099–2106, 2004.
[12]
Y. M. Zhong, X. Qiao, Z. X. Cheng et al., “Activities of a novel Schiff Base copper(II) complex on growth inhibition and apoptosis induction toward MCF-7 human breast cancer cells via mitochondrial pathway,” Journal of Inorganic Biochemistry, vol. 117, pp. 1–9, 2012.
[13]
D. S. Raja, S. P. Bhuvanesh, and K. Natarajan, “Structure–activity relationship study of copper(II) complexes with 2-oxo-1,2-dihydroquinoline-3-carbaldehyde (4′-methylbenzoyl) hydrazone: synthesis, structures, DNA and protein interaction studies, antioxidative and cytotoxic activity,” Journal of Biological Inorganic Chemistry, vol. 17, no. 2, pp. 223–237, 2012.
[14]
S. Tabassum, S. Amir, F. Arjmand et al., “Mixed-ligand Cu(II)-vanillin Schiff base complexes; Effect of coligands on their DNA binding, DNA cleavage, SOD mimetic and anticancer activity,” European Journal of Medicinal Chemistry, vol. 60, pp. 216–232, 2013.
[15]
B.-L. Fei, W. Li, W.-X. Xu, et al., “Two novel copper complexes of 2, -bipyridine: Evaluation of the DNA binding and cytotoxic activity,” Journal of Photochemistry and Photobiology B, vol. 125, pp. 32–41, 2013.
[16]
K. Abdi, H. Hadadzadeh, M. Weil, and M. Salimi, “Mononuclear copper(II) complex with terpyridine and an extended phenanthroline base, [Cu(tpy)(dppz)]2+: synthesis, crystal structure, DNA binding and cytotoxicity activity,” Polyhedron, vol. 31, no. 1, pp. 638–648, 2012.
[17]
K. Ghosh, P. Kumar, N. Tyagi et al., “DNA interaction, superoxide scavenging and cytotoxicity studies on new copper(II) complexes derived from a tridentate ligand,” Polyhedron, vol. 30, no. 16, pp. 2667–2677, 2011.
[18]
S. Roy, S. Saha, R. Majumdar, R. R. Dighe, and A. R. Chakravarty, “DNA photocleavage and anticancer activity of terpyridine copper(II) complexes having phenanthroline bases,” Polyhedron, vol. 29, no. 14, pp. 2787–2794, 2010.
[19]
M. M. Verasundharam and U. N. Balachandran, “DNA binding and cytotoxicity of copper (II) imidazole terpyridine complexes: role of oxyanion, hydrogen bonding and - interaction,” European Journal of Medicinal Chemistry, vol. 68, pp. 244–252, 2013.
[20]
L. Wang, K. Zheng, Y. Li, Z. Wu, and C. Yan, “Synthesis and crystal structure of a new copper(II) complex with N,N′-(4,4′-bithiazole-2,2′-diyl)diacetimidamide as ligand: molecular docking, DNA-binding and cytotoxicity activity studies,” Journal of Molecular Structure, vol. 1037, pp. 15–22, 2013.
[21]
X. Qiao, Z. Ma, C. Xie et al., “Study on potential antitumor mechanism of a novel Schiff Base copper(II) complex: Synthesis, crystal structure, DNA binding, cytotoxicity and apoptosis induction activity,” Journal of Inorganic Biochemistry, vol. 105, no. 5, pp. 728–737, 2011.
[22]
L. Jia, J. Shi, Z. Sun et al., “Synthesis, crystal structure, DNA-binding properties, cytotoxic and antioxidation activities of several ternary copper(II) complexes with a new reduced Schiff base ligand,” Inorganica Chimica Acta, vol. 391, pp. 121–129, 2012.
[23]
Z. Liu, B. Wang, B. Li et al., “Crystal structures, DNA-binding and cytotoxic activities studies of Cu(II) complexes with 2-oxo-quinoline-3-carbaldehyde Schiff-bases,” European Journal of Medicinal Chemistry, vol. 45, no. 11, pp. 5353–5361, 2010.
[24]
S. Rollas and ?. Güniz Kü?ükgüzel, “Biological activities of hydrazone derivatives,” Molecules, vol. 12, pp. 1910–1939, 2007.
[25]
H. Naeimi, K. Rabiei, and F. Salimi, “Template synthesis of some double Schiff-base metal(II) complexes through one pot four component reactions under mild and convenient conditions,” Journal of Coordination Chemistry, vol. 62, no. 7, pp. 1199–1205, 2009.
[26]
V. Patroniak-Krzyminiewska, H. Litkowska, and W. Radecka-Paryzek, “Metal-template synthesis and characterization of a nitrogen-oxygen donor schiff base macrocyclic system,” Monatshefte fur Chemie, vol. 130, no. 2, pp. 243–247, 1999.
[27]
D. Sakthilatha and R. Rajavel, “The template synthesis, spectral and antibacterial investigation of new N2O2 donor Schiff base Cu(II), Ni(II), Co(II), Mn(II) and VO(IV) complexes derived from 2-Hydroxy acetophenone with 4-chloro-2,6-diaminopyrimidine,” Journal of Chemical and Pharmaceutical Research, vol. 5, no. 1, pp. 57–63, 2013.
[28]
N. Hossein, N. Maryam, and J. Chin, “Efficient, convenient and mild three component template preparation and characterization of some new schiff base complexes,” Journal of the Chinese Chemical Society, vol. 55, pp. 858–862, 2008.
[29]
A. Manimarana, R. Prabhakaranb, T. Deepaa, K. Natarajan, and C. Jayabalakrishnana, “Synthesis, spectral characterization, electrochemistry and catalytic activities of Cu(II) complexes of bifunctional tridentate Schiff bases containing O–N–O donors,” Applied Organometallic Chemistry, vol. 22, no. 7, pp. 353–358, 2008.
[30]
B. Bottari, R. Maccari, F. Monforte, R. Ottanà, E. Rotondo, and M. G. Vigorita, “Antimycobacterial in vitro activity of cobalt(II) isonicotinoylhydrazone complexes. Part 10,” Bioorganic & Medicinal Chemistry Letters, vol. 11, no. 3, pp. 301–303, 2001.
[31]
S. ?ak?ra and E. Bi?er, “Synthesis, spectroscopic and electrochemical characteristics of a novel Schiff-base from saccharin and tryptophan,” Journal of the Iranian Chemical Society, vol. 7, no. 2, pp. 394–404, 2010.
[32]
A. A. Gahr, “Spectrophotometric studies on some Schiff bases derived from benzidine,” Spectrochimica Acta Part A, vol. 46, no. 12, pp. 1751–1757, 1990.
[33]
S. P. Sovilj, V. M. Vasi, D. L. Stoji, B. Stojeva-Radovanovi, and L. T. Petkovska, “Spectrophotometric studies of the influence of organic solvents and substituents on some schiff bases,” Spectroscopy Letters, vol. 31, pp. 1107–1122, 1998.
[34]
M. M. H. Khalil, M. M. Aboaly, and R. M. Ramadan, “Spectroscopic and electrochemical studies of ruthenium and osmium complexes of salicylideneimine-2-thiophenol Schiff base,” Spectrochimica Acta A: Molecular and Biomolecular Spectroscopy, vol. 61, no. 1-2, pp. 157–161, 2005.
[35]
S. Zhu, F. Kou, H. Lin, C. Lin, M. Lin, and Y. Chen, “Synthesis of novel macrocyclic polyamines with a pendant phenol group and properties and structures of their copper(II) complexes,” Inorganic Chemistry, vol. 35, no. 20, pp. 5851–5859, 1996.
[36]
R. K. Ray and G. R. Hoffman, “EPR spectra and covalency of bis(amidinourea/O-alkyl-1-amidinourea)copper(II) complexes. Part II. Properties of the chromophore,” Inorganica Chimica Acta, vol. 173, pp. 207–214, 1990.
[37]
N. Raman, A. Kulandaisamy, and K. Jeyasubramanian, “Synthesis, spectral, redox and biological studies of some Schiff base copper(II), Nickel(II), cobalt(II), Manganese(II), Zinc(II) and oxovanadium complexes derived from 1-phenyl-2,3dimethyl-4(4 iminopentan-2- one)pyrazole-5-one and 2-amino phenol/ 2-amino-thiophenol,” Indian Journal of Chemistry, vol. 41, pp. 942–949, 2002.
[38]
B. J. Hathaway and D. E. Billing, “The electronic properties and stereochemistry of mono-nuclear complexes of the copper(II) ion,” Coordination Chemistry Reviews, vol. 5, no. 2, pp. 143–207, 1970.
[39]
J. E. Wertz and J. R. Bolton, Electron Spin Resonance, McGraw-Hill, New York, NY, USA, 1972.
[40]
S. E. Sherman, D. Gibson, A. H. J. Wand, and S. J. Lippard, “Crystal and molecular structure of cis-[Pt(NH3)2[d(pGpG)]], the principal adduct formed by cis-diamminedichloroplatinum(II) with DNA,” Journal of the American Chemical Society, vol. 110, pp. 7368–7381, 1988.
[41]
L. Strekowski and B. Wilson, “Noncovalent interactions with DNA: an overview,” Mutation Research, vol. 623, no. 1-2, pp. 3–13, 2007.
[42]
J. K. Barton, A. T. Danishefsky, and J. M. Goldberg, “Tris(phenanthroline)ruthenium(II): stereoselectivity in binding to DNA,” Journal of the American Chemical Society, vol. 106, no. 7, pp. 2172–2176, 1984.
[43]
A. M. Pyle, J. P. Rehmann, R. Meshoyrer, C. V. Kumar, N. J. Turro, and J. K. Barton, “Mixed-ligand complexes of ruthenium(II): factors governing binding to DNA,” Journal of the American Chemical Society, vol. 111, no. 8, pp. 3051–3058, 1989.
[44]
J. P. Nicholson, M. R. Wolmarans, and G. R. Park, “The role of albumin in critical illness,” The British Journal of Anaesthesia, vol. 85, no. 4, pp. 599–610, 2000.
[45]
Y. Wang, H. Zhang, G. Zhang, W. Tao, and S. Tang, “Interaction of the flavonoid hesperidin with bovine serum albumin: a fluorescence quenching study,” Journal of Luminescence, vol. 126, no. 1, pp. 211–218, 2007.
[46]
Y. Hu, Y. Liu, J. Wang, X. Xiao, and S. Qu, “Study of the interaction between monoammonium glycyrrhizinate and bovine serum albumin,” Journal of Pharmaceutical and Biomedical Analysis, vol. 36, no. 4, pp. 915–919, 2004.
[47]
J. R. Lakowicz and G. Weber, “Quenching of fluorescence by oxygen. probe for structural fluctuations in macromolecules,” Biochemistry, vol. 12, no. 21, pp. 4161–4170, 1973.
[48]
B. Ahmad, S. Parveen, and R. H. Khan, “Effect of albumin conformation on the binding of ciprofloxacin to human serum albumin: a novel approach directly assigning binding site,” Biomacromolecules, vol. 7, no. 4, pp. 1350–1356, 2006.
[49]
S. S. Lehrer, “Solute perturbation of protein fluorescence. The quenching of the tryptophyl fluorescence of model compounds and of lysozyme by iodide ion,” Biochemistry, vol. 10, no. 17, pp. 3254–3263, 1971.
[50]
R. Aurkie, K. S. Banabithi, P. Uttam, and S. Basu, “Nickel(II)-Schiff base complex recognizing domain II of bovine and human serum albumin: spectroscopic and docking studies,” Spectrochimica Acta A, vol. 92, pp. 164–174, 2012.
[51]
Y. Q. Wang, H. M. Zhang, G. C. Zhang, W. H. Tao, and S. H. Tang, “Binding of brucine to human serum albumin,” Journal of Molecular Structure, vol. 830, no. 1–3, pp. 40–45, 2007.
[52]
A. Varlan and M. Hillebrand, “Bovine and human serum albumin interactions with 3-carboxyphenoxathiin studied by fluorescence and circular dichroism spectroscopy,” Molecules, vol. 15, no. 6, pp. 3905–3919, 2010.
[53]
C. Renvoize, A. Biola, M. Pallardy, and J. Breard, “Apoptosis: identification of dying cells,” Cell Biology and Toxicology, vol. 14, no. 2, pp. 111–120, 1998.
[54]
J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Plenum Press, New York, NY, USA, 2nd edition, 1999.
[55]
T. Mosmann, “Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays,” Journal of Immunological Methods, vol. 65, no. 1-2, pp. 55–63, 1983.
[56]
A. Arunkumar, M. R. Vijayababu, P. Kanagaraj, K. Balasubramanian, M. M. Aruldhas, and J. Arunakaran, “Growth suppressing effect of garlic compound diallyl disulfide on prostate cancer cell line (PC-3) in vitro,” Biological and Pharmaceutical Bulletin, vol. 28, no. 4, pp. 740–743, 2005.
[57]
E. M. Degli, Methods in Cell Biology, Academic Press, 2001.
[58]
Z. Darzynkiewicz, S. Bruno, G. del Bino et al., “Features of apoptotic cells measured by flow cytometry,” Cytometry, vol. 13, no. 8, pp. 795–808, 1992.