全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Synthesis of Disperse Dyes from Pyridone and Resorcinol Coupled to Diazotized 2-Amino-4-chloro-5-formylthiazole and Application to Polyester

DOI: 10.1155/2014/864286

Full-Text   Cite this paper   Add to My Lib

Abstract:

The aim of this study was to synthesize disperse dyes in the derivative of 2-amino-4-chloro-5-formylthiazole by conventional diazotization and couplings with pyridone and resorcinol. The dyes were characterized by visible absorption spectroscopy, IR spectral studies, and 1H and 13C NMR. The pyridone and resorcinol substituted dyes exhausted well with good depth on 100% polyester fabrics with a shade of brown and purple colours, respectively. The heteroatom and the intrinsic conjugation in the thiazole structure results in high bathochromic shifts and lead to brightness of shades. The dyed fabrics showed very good to excellent wash fastness and moderate to good light and perspiration fastness properties. 1. Introduction Textile dyes such as indigo can be derived from natural sources, while others such as disperse dyes which are meant for specific applications are obtained by synthesis. The dyes are classified according to their chemical constitution or method of application [1]. According to the colour index [2], disperse dye is a class of sparingly water soluble dyes originally introduced for dyeing cellulose acetate and usually applied from fine aqueous dispersion. Disperse dyes have also been defined as sparingly water soluble, nonionic dyes applied to hydrophobic fibres from aqueous dispersions [3]. Disperse dyes are classified as either nitroarylamine, azo, or anthraquinone. Almost all contain amino (NH2) or substituted amino groups but do not contain solubilizing groups such as sulphonic acid (SO3H) groups. The most dominant group of disperse dyes is the azo disperse dyes which account for over 70% of all disperse dyes manufactured. Disperse dyes, though originally developed to dye cellulose acetate, are now usefully applied to other hydrophobic fibres such as polyester [4]. Although more hydrophobic than cellulose acetate, polyester is more readily dyeable by some of the dyes developed for acetate using different techniques of dyeing at high temperature or in the presence of swelling agents or carriers [5]. This study focused on synthesis of disperse dyes in the derivative of 2-amino-4-chloro-5-formylthiazole by conventional diazotization and couplings with pyridone and resorcinol. The 2-amino-4-chloro-5-formylthiazole provides the base heterocyclic diazo component [6–9]. Pyridone derivatives are relatively recent heterocyclic intermediates for the preparation of azo dyes because azo pyridone dyes produce bright hues and are suitable for dyeing polyester fabrics. Although synthesis and condensation of the formyl group in the derivatives of

References

[1]  N. E. Abrahat, Dyes and Their Intermediates, Edward Arnold, London, UK, 1977.
[2]  CI (Colour Index), Chemical Constitutions, Society of Dyers and Colourists (SDC) and American Association of Textile Chemists and Colourists (AATCC), 23rd edition, 1971.
[3]  M. P. Philip, Webster’s Online Dictionary, Roster edition, 2005, http://www.webster-online-dictionary.org/definition/DISPERSE+DYES.
[4]  C. R. Meena, R. V. Adivarekar, and N. Sekar, “Synthesis and application of vinylsulphone disperse reactive dyes for polyester,” International Journal of ChemTech Research, vol. 5, no. 2, pp. 585–591, 2013.
[5]  CI (Colour Index), Chemical Constitutions, Society of Dyers and Colourists (SDC) and American Association of TextileChemists and Colourists (AATCC), 43rd edition, 1971.
[6]  K. A. Bello, “Long wavelength absorbing azo dyes derived from 2-amino-4-chloro-5-formylthiazole as diazo component,” Dyes and Pigments, vol. 27, no. 1, pp. 45–54, 1995.
[7]  H. R. Maradiya and V. S. Patel, “Synthesis and application of disperse dyes based on 2-aminothiazole derivatives,” Chemistry of Heterocyclic Compounds, vol. 39, no. 3, pp. 404–409, 2003.
[8]  M. M. El-Molla, Z. H. Ismaeil, F. M. A. Soliman, H. Shaimaa, and A. Monem, “Synthesis of several newly disperse dyes and their application in textile printing,” Journal of the Textile Association, vol. 74, no. 1, pp. 18–25, 2013.
[9]  S. K. Zadafiya, J. H. Tailor, and G. M. Malik, “Disperse dyes based on thiazole, their dyeing application on polyester fiber and their antimicrobial activity,” Journal of Chemistry, vol. 2013, Article ID 851418, 5 pages, 2013.
[10]  P. O. Nkeonye, Fundamental Principles of Textile Dyeing, Printing and Finishing, Ahmadu Bello University Press, 1987.
[11]  A. Marini, M. Aurora, B. Alessendro, and M. Benedetha, “What is solvatochromism?” The Journal of Physical Chemistry B, vol. 114, no. 51, pp. 17128–17135, 2010.
[12]  P. Parvizi, A. Khosravi, S. Moradian, and K. Gharanjig, “Synthesis and application of some alkali-clearable azo disperse dyes based on naphthalimide derivatives,” Journal of the Chinese Chemical Society, vol. 56, no. 5, pp. 1035–1042, 2009.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133