Identification and Expression of a Putative Facilitative Urea Transporter in Three Species of True Frogs (Ranidae): Implications for Terrestrial Adaptation
Urea transporters (UTs) help mediate the transmembrane movement of urea and therefore are likely important in amphibian osmoregulation. Although UTs contribute to urea reabsorption in anuran excretory organs, little is known about the protein’s distribution and functions in other tissues, and their importance in the evolutionary adaptation of amphibians to their environment remains unclear. To address these questions, we obtained a partial sequence of a putative UT and examined relative abundance of this protein in tissues of the wood frog (Rana sylvatica), leopard frog (R. pipiens), and mink frog (R. septentrionalis), closely related species that are adapted to different habitats. Using immunoblotting techniques, we found the protein to be abundant in the osmoregulatory organs but also present in visceral organs, suggesting that UTs play both osmoregulatory and nonosmoregulatory roles in amphibians. UT abundance seems to relate to the species’ habitat preference, as levels of the protein were higher in the terrestrial R. sylvatica, intermediate in the semiaquatic R. pipiens, and quite low in the aquatic R. septentrionalis. These findings suggest that, in amphibians, UTs are involved in various physiological processes, including solute and water dynamics, and that they have played a role in adaptation to the osmotic challenges of terrestrial environments. 1. Introduction During periods of osmotic stress, amphibians accumulate various balancing osmolytes that help them maintain water balance. Urea, the major end product of nitrogen metabolism in most amphibians, is an organic solute which is usually maintained at relatively low levels in amphibians; however, desiccating or hypersaline conditions will result in urea accumulation [1, 2]. High levels of urea in the body fluids reduce water loss and improve ability to survive osmotic stresses [1, 2] while at the same time replacing ionic solutes that are more detrimental to the animal [3]. Hyperuremia also contributes to winter survival in certain terrestrially hibernating frogs [4–6]. In amphibians, urea accumulation occurs by increasing the synthesis of urea by altering urea-cycle activity and/or increasing the retention of urea [7]. The latter can be accomplished by decreasing urine production through a reduction in glomerular filtration rate and by reabsorbing urea from the filtrate in the kidneys and urinary bladder [8, 9]. Growing evidence suggests the involvement of transport proteins, specifically facilitative urea transporters (UTs), in the reabsorption process [10–12], but the specific roles of
References
[1]
M. S. Gordon, K. Schmidt-Nielsen, and H. M. Kelly, “Osmotic regulation in the crab-eating frog (Rana cancrivora),” Journal of Experimental Biology, vol. 38, pp. 659–678, 1961.
[2]
C. J?rgensen, “Urea and amphibian water economy,” Comparative Biochemistry and Physiology A, vol. 117, pp. 161–170, 1997.
[3]
J. E. Grundy and K. B. Storey, “Urea and salt effects on enzymes from estivating and non-estivating amphibians,” Molecular and Cellular Biochemistry, vol. 131, no. 1, pp. 9–17, 1994.
[4]
J. P. Costanzo and R. E. Lee Jr., “Cryoprotection by urea in a terrestrially hibernating frog,” The Journal of Experimental Biology, vol. 208, no. 21, pp. 4079–4089, 2005.
[5]
J. P. Costanzo, M. Marjanovic, E. A. Fincel, and R. E. Lee Jr., “Urea loading enhances postfreeze performance of frog skeletal muscle,” Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, vol. 178, no. 3, pp. 413–420, 2008.
[6]
T. J. Muir, J. P. Costanzo, and R. E. Lee Jr., “Osmotic and metabolic responses to dehydration and urea-loading in a dormant, terrestrially hibernating frog,” Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, vol. 177, no. 8, pp. 917–926, 2007.
[7]
J. Balinsky, “Adaptation of nitrogen metabolism to hyperosmotic environment in Amphibia,” Journal of Experimental Zoology, vol. 350, pp. 335–350, 1981.
[8]
K. Schmidt-Nielsen and P. Lee, “Kidney function in the crab-eating frog (Rana cancrivora),” The Journal of Experimental Biology, vol. 39, pp. 167–177, 1962.
[9]
S. Shpun and U. Katz, “Renal function at steady state in a toad (Bufo viridis) acclimated in hyperosmotic NaCl and urea solutions,” Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, vol. 164, no. 8, pp. 646–652, 1995.
[10]
C. Couriaud, C. Leroy, M. Simon et al., “Molecular and functional characterization of an amphibian urea transporter,” Biochimica et Biophysica Acta—Biomembranes, vol. 1421, no. 2, pp. 347–352, 1999.
[11]
N. Konno, S. Hyodo, K. Matsuda, and M. Uchiyama, “Effect of osmotic stress on expression of a putative facilitative urea transporter in the kidney and urinary bladder of the marine toad, Bufo marinus,” The Journal of Experimental Biology, vol. 209, no. 7, pp. 1207–1216, 2006.
[12]
A. J. Rosendale, J. P. Costanzo, and R. E. Lee, “Seasonal variation and response to osmotic challenge in urea transporter expression in the dehydration- and freeze-tolerant wood frog, Rana sylvatica,” Journal of Experimental Zoology A: Ecological Genetics and Physiology, vol. 317, no. 7, pp. A401–A409, 2012.
[13]
J. M. Sands, “Mammalian urea transporters,” Annual Review of Physiology, vol. 65, pp. 543–566, 2003.
[14]
M. D. McDonald, C. P. Smith, and P. J. Walsh, “The physiology and evolution of urea transport in fishes,” The Journal of Membrane Biology, vol. 212, no. 2, pp. 93–107, 2006.
[15]
M. Uchiyama, R. Kikuchi, N. Konno, T. Wakasugi, and K. Matsuda, “Localization and regulation of a facilitative urea transporter in the kidney of the red-eared slider turtle (Trachemys scripta elegans),” The Journal of Experimental Biology, vol. 212, no. 2, pp. 249–256, 2009.
[16]
K. L. Manchester, “Use of UV methods for measurement of protein and nucleic acid concentrations,” BioTechniques, vol. 20, no. 6, pp. 968–970, 1996.
[17]
B. G. Hall, CodonAlign, Version 2.0, Bellingham Research Institute, Bellingham, Wash, USA, 2004.
[18]
J. A. A. Nylander, MrModeltest v2, Evolutionary Biology Centre, Uppsala University, 2004.
[19]
P. J. Waddell and M. A. Steel, “General time-reversible distances with unequal rates across sites: mixing and inverse Gaussian distributions with invariant sites,” Molecular Phylogenetics and Evolution, vol. 8, no. 3, pp. 398–414, 1997.
[20]
K. Tamura, D. Peterson, N. Peterson, G. Stecher, M. Nei, and S. Kumar, “MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods,” Molecular Biology and Evolution, vol. 28, no. 10, pp. 2731–2739, 2011.
[21]
T. D. Schmittgen and K. J. Livak, “Analyzing real-time PCR data by the comparative CT method,” Nature Protocols, vol. 3, no. 6, pp. 1101–1108, 2008.
[22]
G. Rousselet, P. Ripoche, and P. Bailly, “Tandem sequence repeats in urea transporters: identification of an urea transporter signature sequence,” American Journal of Physiology, vol. 270, no. 3, pp. F554–F555, 1996.
[23]
S. M. Bagnasco, “The erythrocyte urea transporter UT-B,” Journal of Membrane Biology, vol. 212, no. 2, pp. 133–138, 2006.
[24]
S. M. Bagnasco, “Role and regulation of urea transporters,” Pflügers Archiv: European Journal of Physiology, vol. 450, no. 4, pp. 217–226, 2005.
[25]
S. Shpun and U. Katz, “Urea transport across urinary bladder and salt acclimation in toad (Bufo viridis),” The American Journal of Physiology, vol. 258, no. 4, pp. R883–R888, 1990.
[26]
F. Garcia-Romeu, A. Masoni, and J. Isaia, “Active urea transport through isolated skins of frog and toad,” The American Journal of Physiology, vol. 241, no. 3, pp. R114–R123, 1981.
[27]
J. Ehrenfeld, “Active proton and urea transport by amphibian skin,” Comparative Biochemistry and Physiology A, vol. 119, no. 1, pp. 35–45, 1998.
[28]
J. D. Klein, R. T. Timmer, P. Rouillard, J. L. Bailey, and J. M. Sands, “UT-A urea transporter protein expressed in liver: upregulation by uremia,” Journal of the American Society of Nephrology, vol. 10, no. 10, pp. 2076–2083, 1999.
[29]
R. T. Timmer, J. D. Klein, S. M. Bagnasco et al., “Localization of the urea transporter UT-B protein in human and rat erythrocytes and tissues,” The American Journal of Physiology: Cell Physiology, vol. 281, no. 4, pp. C1318–C1325, 2001.
[30]
N. Lucien, P. Bruneval, F. Lasbennes et al., “UT-B1 urea transporter is expressed along the urinary and gastrointestinal tracts of the mouse,” American Journal of Physiology: Regulatory Integrative and Comparative Physiology, vol. 288, no. 4, pp. R1046–R1056, 2005.
[31]
J. Gossling, W. J. Loesche, and G. W. Nace, “Large intestine bacterial flora of nonhibernating and hibernating leopard frogs (Rana pipiens),” Applied and Environmental Microbiology, vol. 44, no. 1, pp. 59–66, 1982.
[32]
A. H. Wright and A. A. Wright, Handbook of Frogs and Toads of the United States and Canada, Comstock Publishing Associates, Ithaca, NY, USA, 1949.
[33]
R. M. DeGraaf and D. D. Rudis, Amphibians and Reptiles of New England: Habitats and Natural History, University of Massachusetts Press, Amherst, Mass, USA, 1983.
[34]
J. V. Regosin, B. S. Windmiller, and J. M. Reed, “Terrestrial habitat use and winter densities of the Wood Frog (Rana sylvatica),” Journal of Herpetology, vol. 37, no. 2, pp. 390–394, 2003.
[35]
T. A. Churchill and K. B. Storey, “Dehydration tolerance in wood frogs: a new perspective on development of amphibian freeze tolerance,” American Journal of Physiology, vol. 265, part 2, no. 6, pp. R1324–R1332, 1993.
[36]
W. D. Schmid, “Some aspects of the water economies of nine species of amphibians,” Ecology, vol. 46, pp. 261–269, 1965.