全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Importance of Biofilms in Urinary Tract Infections: New Therapeutic Approaches

DOI: 10.1155/2014/543974

Full-Text   Cite this paper   Add to My Lib

Abstract:

Bacterial biofilms play an important role in urinary tract infections (UTIs), being responsible for persistence infections causing relapses and acute prostatitis. Bacterial forming biofilm are difficult to eradicate due to the antimicrobial resistant phenotype that this structure confers being combined therapy recommended for the treatment of biofilm-associated infections. However, the presence of persistent cells showing reduced metabolism that leads to higher levels of antimicrobial resistance makes the search for new therapeutic tools necessary. Here, a review of these new therapeutic approaches is provided including catheters coated with hydrogels or antibiotics, nanoparticles, iontophoresis, biofilm enzyme inhibitors, liposomes, bacterial interference, bacteriophages, quorum sensing inhibitors, low-energy surface acoustic waves, and antiadhesion agents. In conclusion, new antimicrobial drugs that inhibit bacterial virulence and biofilm formation are needed. 1. Urinary Tract Infections Urinary tract infections (UTIs) are one of the most important causes of morbidity and health care spending affecting persons of all ages, including young women, children, and the elderly. It is estimated that approximately 40% of women have had a UTI at some time in their lives [1]. These infections are traditionally classified based on clinical symptoms, laboratory data, and microbiological findings. UTIs are categorized as cystitis (infection of the lower urinary tract or bladder), pyelonephritis (infection affecting the upper urinary tract or the kidneys), and prostatitis (prostate inflammation) [2]. More recently, however, UTIs have been clinically classified into groups based on clinical factors and their impact on morbidity and treatment [3]. These categories are acute uncomplicated cystitis in young women, recurrent cystitis in young women, acute uncomplicated pyelonephritis in young women, complicated UTI, UTI related to indwelling catheters, UTI in men, and asymptomatic bacteriuria [3]. Sexually active young women are at greater risk of presenting UTIs (especially uncomplicated cystitis) due to their anatomy (short urethra) and certain behavioural factors. Uncomplicated cystitis is limited to a few pathogens, being the most frequent Escherichia coli, causing approximately 80% of cystitis [3]. Recurrent UTIs appear in more than 20% of young women with acute cystitis and are divided into relapse (if all the infections are caused by the same microorganism) and reinfection (if the episodes are caused by different microorganisms). Relapses are categorized as

References

[1]  C. M. Kunin, “Urinary tract infections in females,” Clinical Infectious Diseases, vol. 18, no. 1, pp. 1–12, 1994.
[2]  M. Grabe, T. E. Bjerklund-Johansen, H. Botto et al., Guidelines on Urological Infectious, European Association Of Urology, 2013.
[3]  W. E. Stamm and T. M. Hooton, “Management of urinary tract infections in adults,” New England Journal of Medicine, vol. 329, no. 18, pp. 1328–1334, 1993.
[4]  S. M. Soto, A. Smithson, J. P. Horcajada, J. A. Martinez, J. P. Mensa, and J. Vila, “Implication of biofilm formation in the persistence of urinary tract infection caused by uropathogenic Escherichia coli,” Clinical Microbiology and Infection, vol. 12, no. 10, pp. 1034–1036, 2006.
[5]  C. M. Brede and D. A. Shoskes, “The etiology and management of acute prostatitis,” Nature Reviews Urology, vol. 8, no. 4, pp. 207–212, 2011.
[6]  F. Millán-Rodríguez, J. Palou, A. Bujons-Tur et al., “Acute bacterial prostatitis: two different sub-categories according to a previous manipulation of the lower urinary tract,” World Journal of Urology, vol. 24, no. 1, pp. 45–50, 2006.
[7]  D. S. Ipe, L. Sundac, W. H. Benjamin Jr., K. H. Moore, and G. C. Ulett, “Asymptomatic bacteriuria: prevalence rates of causal microorganisms, etiology of infection in different patient populations, and recent advances in molecular detection,” FEMS Microbiology Letters, vol. 346, no. 1, pp. 1–10, 2013.
[8]  L. Nicolle, P. A. M. Anderson, J. Conly et al., “Uncomplicated urinary tract infection in women: current practice and the effect of antibiotic resistance on empiric treatment,” Canadian Family Physician, vol. 52, pp. 612–618, 2006.
[9]  L. E. Nicolle and AMMI Canada Guidelines Committee, “Complicated urinary tract infection in adults,” The Canadian Journal of Infectious Diseases & Medical Microbiology, vol. 16, pp. 349–360, 2005.
[10]  J. W. Warren, “Catheter-associated urinary tract infections,” Infectious Disease Clinics of North America, vol. 11, no. 3, pp. 609–622, 1997.
[11]  R. Orenstein and E. S. Wong, “Urinary tract infections in adults,” American Family Physician, vol. 59, no. 5, pp. 1225–1234, 1999.
[12]  U. R?mling and C. Balsalobre, “Biofilm infections, their resilience to therapy and innovative treatment strategies,” Journal of Internal Medicine, vol. 272, no. 6, pp. 541–561, 2012.
[13]  H.-C. Flemming and J. Wingender, “The biofilm matrix,” Nature Reviews Microbiology, vol. 8, no. 9, pp. 623–633, 2010.
[14]  R. M. Donlan, “Biofilms: microbial life on surfaces,” Emerging Infectious Diseases, vol. 8, no. 9, pp. 881–890, 2002.
[15]  R. M. Donlan and J. W. Costerton, “Biofilms: survival mechanisms of clinically relevant microorganisms,” Clinical Microbiology Reviews, vol. 15, no. 2, pp. 167–193, 2002.
[16]  A. P. Lenz, K. S. Williamson, B. Pitts, P. S. Stewart, and M. J. Franklin, “Localized gene expression in Pseudomonas aeruginosa biofilms,” Applied and Environmental Microbiology, vol. 74, no. 14, pp. 4463–4471, 2008.
[17]  L. Zhang and T. Mah, “Involvement of a novel efflux system in biofilm-specific resistance to antibiotics,” Journal of Bacteriology, vol. 190, no. 13, pp. 4447–4452, 2008.
[18]  J. Klebensberger, A. Birkenmaier, R. Geffers, S. Kjelleberg, and B. Philipp, “SiaA and SiaD are essential for inducing autoaggregation as a specific response to detergent stress in Pseudomonas aeruginosa,” Environmental Microbiology, vol. 11, no. 12, pp. 3073–3086, 2009.
[19]  S. D. Stowe, J. J. Richards, A. T. Tucker, R. Thompson, C. Melander, and J. Cavanagh, “Anti-biofilm compounds derived from marine sponges,” Marine Drugs, vol. 9, no. 10, pp. 2010–2035, 2011.
[20]  K. P. Lemon, D. E. Higgins, and R. Kolter, “Flagellar motility is critical for Listeria monocytogenes biofilm formation,” Journal of Bacteriology, vol. 189, no. 12, pp. 4418–4424, 2007.
[21]  C. M. Toutain, N. C. Caizza, M. E. Zegans, and G. A. O'Toole, “Roles for flagellar stators in biofilm formation by Pseudomonas aeruginosa,” Research in Microbiology, vol. 158, no. 5, pp. 471–477, 2007.
[22]  T. Schmidt and A. Kirschning, “Total synthesis of carolacton, a highly potent biofilm inhibitor,” Angewandte Chemie, vol. 51, no. 4, pp. 1063–1066, 2012.
[23]  P. N. Danese, L. A. Pratt, and R. Kolter, “Exopolysaccharide production is required for development of Escherichia coli K-12 biofilm architecture,” Journal of Bacteriology, vol. 182, no. 12, pp. 3593–3596, 2000.
[24]  G. G. Anderson, J. J. Palermo, J. D. Schilling, R. Roth, J. Heuser, and S. J. Hultgren, “Intracellular bacterial biofilm-like pods in urinary tract infections,” Science, vol. 301, no. 5629, pp. 105–107, 2003.
[25]  C. Beloin, A. Roux, and J. M. Ghigo, “Escherichia coli biofilms,” Current Topics in Microbiology and Immunology, vol. 322, pp. 249–289, 2008.
[26]  L. Cegelski, J. S. Pinkner, N. D. Hammer et al., “Small-molecule inhibitors target Escherichia coli amyloid biogenesis and biofilm formation,” Nature Chemical Biology, vol. 5, no. 12, pp. 913–919, 2009.
[27]  S. M. Hinsa, M. Espinosa-Urgel, J. L. Ramos, and G. A. O'Toole, “Transition from reversible to irreversible attachment during biofilm formation by Pseudomonas fluorescens WCS365 requires an ABC transporter and a large secreted protein,” Molecular Microbiology, vol. 49, no. 4, pp. 905–918, 2003.
[28]  N. C. Caiazza and G. A. O'Toole, “SadB is required for the transition from reversible to irreversible attachment during biofilm formation by Pseudomonas aeruginosa PA14,” Journal of Bacteriology, vol. 186, no. 14, pp. 4476–4485, 2004.
[29]  O. E. Petrova and K. Sauer, “The novel two-component regulatory system BfiSR regulates biofilm development by controlling the small RNA rsmZ through CafA,” Journal of Bacteriology, vol. 192, no. 20, pp. 5275–5288, 2010.
[30]  H. M. Lappin-Scott and C. Bass, “Biofilm formation: attachment, growth, and detachment of microbes from surfaces,” American Journal of Infection Control, vol. 29, no. 4, pp. 250–251, 2001.
[31]  H. Laue, A. Schenk, H. Li et al., “Contribution of alginate and levan production to biofilm formation by Pseudomonas syringae,” Microbiology, vol. 152, no. 10, pp. 2909–2918, 2006.
[32]  X. Zogaj, W. Bokranz, M. Nimtz, and U. R?mling, “Production of cellulose and curli fimbriae by members of the family Enterobacteriaceae isolated from the human gastrointestinal tract,” Infection and Immunity, vol. 71, no. 7, pp. 4151–4158, 2003.
[33]  K. Agladze, X. Wang, and T. Romeo, “Spatial periodicity of Eschenchia coli K-12 biofilm microstructure initiates during a reversible, polar attachment phase of development and requires the polysaccharide adhesin PGA,” Journal of Bacteriology, vol. 187, no. 24, pp. 8237–8246, 2005.
[34]  J. C. Boucher, H. Yu, M. H. Mudd, and V. Deretic, “Mucoid Pseudomonas aeruginosa in cystic fibrosis: characterization of muc mutations in clinical isolates and analysis of clearance in a mouse model of respiratory infection,” Infection and Immunity, vol. 65, no. 9, pp. 3838–3846, 1997.
[35]  E. E. Mann and D. J. Wozniak, “Pseudomonas biofilm matrix composition and niche biology,” FEMS Microbiology Reviews, vol. 36, no. 4, pp. 893–916, 2012.
[36]  D. O. Serra, A. M. Richter, and R. Hengge, “Cellulose as an architectural element in spatially structured Escherichia coli biofilms,” Journal of Bacteriology, vol. 195, pp. 5540–5554, 2013.
[37]  E. Karatan and P. Watnick, “Signals, regulatory networks, and materials that build and break bacterial biofilms,” Microbiology and Molecular Biology Reviews, vol. 73, no. 2, pp. 310–347, 2009.
[38]  J. W. Costerton, K. J. Cheng, G. G. Geesey et al., “Bacterial biofilms in nature and disease,” Annual Review of Microbiology, vol. 41, pp. 435–464, 1987.
[39]  J. B. Kaplan, “Biofilm dispersal: mechanisms, clinical implications, and potential therapeutic uses,” Journal of Dental Research, vol. 89, no. 3, pp. 205–218, 2010.
[40]  S. H. Hong, X. Wang, and T. K. Wood, “Controlling biofilm formation, prophage excision and cell death by rewiring global regulator H-NS of Escherichia coli,” Microbial Biotechnology, vol. 3, no. 3, pp. 344–356, 2010.
[41]  M. C. Rowe, H. L. Withers, and S. Swift, “Uropathogenic Escherichia coli forms biofilm aggregates under iron restriction that disperse upon the supply of iron,” FEMS Microbiology Letters, vol. 307, no. 1, pp. 102–109, 2010.
[42]  R. Tamayo, J. T. Pratt, and A. Camilli, “Roles of cyclic diguanylate in the regulation of bacterial pathogenesis,” Annual Review of Microbiology, vol. 61, pp. 131–148, 2007.
[43]  M. Kostakioti, M. Hadjifrangiskou, and S. J. Hultgren, “Bacterial biofilms: development, dispersal, and therapeutic strategies in the dawn of the postantibiotic era,” Cold Spring Harbor Perspectives in Medicine, vol. 3, no. 4, Article ID a010306, 2013.
[44]  M. M. Méndez-Ortiz, M. Hyodo, Y. Hayakawa, and J. Membrillo-Hernández, “Genome-wide transcriptional profile of Escherichia coli in response to high levels of the second messenger 3′,5′-cyclic diguanylic acid,” The Journal of Biological Chemistry, vol. 281, no. 12, pp. 8090–8099, 2006.
[45]  R. P. Ryan, “Cyclic di-GMP signalling and the regulation of bacterial virulence,” Microbiology, vol. 159, no. 7, pp. 1286–1297, 2013.
[46]  M. A. Mulvey, Y. S. Lopez-Boado, C. L. Wilson et al., “Induction and evasion of host defenses by type 1-piliated uropathogenic Escherichia coli,” Science, vol. 282, no. 5393, pp. 1494–1497, 1998.
[47]  S. Hannan, D. Ready, A. S. Jasni, M. Rogers, J. Pratten, and A. P. Roberts, “Transfer of antibiotic resistance by transformation with eDNA within oral biofilms,” FEMS Immunology and Medical Microbiology, vol. 59, no. 3, pp. 345–349, 2010.
[48]  D. J. Schwartz, S. L. Chen, S. J. Hultgren, and P. C. Seed, “Population dynamics and niche distribution of uropathogenic Escherichia coli during acute and chronic urinary tract infection,” Infection and Immunity, vol. 79, no. 10, pp. 4250–4259, 2011.
[49]  L. Robino, P. Scavone, L. Araujo, G. Algorta, P. Zunino, and R. Vignoli, “Detection of intracellular bacterial communities in a child with Escherichia coli recurrent urinary tract infections,” Pathogens and Disease, vol. 68, no. 3, pp. 78–81, 2013.
[50]  P. Tenke, B. Kovacs, M. J?ckel, and E. Nagy, “The role of biofilm infection in urology,” World Journal of Urology, vol. 24, no. 1, pp. 13–20, 2006.
[51]  J. C. Nickel, I. Ruseska, J. B. Wright, and J. W. Costerton, “Tobramycin resistance of Pseudomonas aeruginosa cells growing as a biofilm on urinary catheter material,” Antimicrobial Agents and Chemotherapy, vol. 27, no. 4, pp. 619–624, 1985.
[52]  S. Choong and H. Whitfield, “Biofilms and their role in infections in urology,” BJU International, vol. 86, no. 8, pp. 935–941, 2000.
[53]  P. A. Tambyah, “Catheter-associated urinary tract infections: diagnosis and prophylaxis,” International Journal of Antimicrobial Agents, vol. 24, supplement 1, pp. S44–S48, 2004.
[54]  P. A. Tambyah, K. T. Halvorson, and D. G. Maki, “A prospective study of pathogenesis of catheter-associated urinary tract infections,” Mayo Clinic Proceedings, vol. 74, no. 2, pp. 131–136, 1999.
[55]  C. Y. Ong, G. C. Ulett, A. N. Mabbett et al., “Identification of type 3 fimbriae in uropathogenic Escherichia coli reveals a role in biofilm formation,” Journal of Bacteriology, vol. 190, no. 3, pp. 1054–1063, 2008.
[56]  D. Stickler, N. Morris, M.-. Moreno, and N. Sabbuba, “Studies on the formation of crystalline bacterial biofilms on urethral catheters,” European Journal of Clinical Microbiology and Infectious Diseases, vol. 17, no. 9, pp. 649–652, 1998.
[57]  D. J. Stickler, N. S. Morris, R. J. C. Mclean, and C. Fuqua, “Biofilms on indwelling urethral catheters produce quorum sensing signal molecules in situ and in vitro,” Applied and Environmental Microbiology, vol. 64, no. 9, pp. 3486–3490, 1998.
[58]  S. Choong, S. Wood, C. Fry, and H. Whitfield, “Catheter associated urinary tract infection and encrustation,” International Journal of Antimicrobial Agents, vol. 17, no. 4, pp. 305–310, 2001.
[59]  S. D. Morgan, D. Rigby, and D. J. Stickler, “A study of the structure of the crystalline bacterial biofilms that can encrust and block silver Foley catheters,” Urological Research, vol. 37, no. 2, pp. 89–93, 2009.
[60]  D. M. Siddiq and R. O. Darouiche, “New strategies to prevent catheter-associated urinary tract infections,” Nature Reviews Urology, vol. 9, no. 6, pp. 305–314, 2012.
[61]  S. M. Jacobsen and M. E. Shirtliff, “Proteus mirabilis biofilms and catheter-associated urinary tract infections,” Virulence, vol. 2, no. 5, pp. 460–465, 2011.
[62]  S. M. Soto, A. Smithson, J. A. Martinez, J. P. Horcajada, J. Mensa, and J. Vila, “Biofilm formation in uropathogenic Escherichia coli strains: relationship with prostatitis, urovirulence factors and antimicrobial resistance,” Journal of Urology, vol. 177, no. 1, pp. 365–368, 2007.
[63]  S. Kravchick, S. Cytron, L. Agulansky, and D. Ben-Dor, “Acute prostatitis in middle-aged men: a prospective study,” BJU International, vol. 93, no. 1, pp. 93–96, 2004.
[64]  G. Finer and D. Landau, “Pathogenesis of urinary tract infections with normal female anatomy,” The Lancet Infectious Diseases, vol. 4, no. 10, pp. 631–635, 2004.
[65]  S. Madersbacher, F. Thalhammer, and M. Marberger, “Pathogenesis and management of recurrent urinary tract infection in women,” Current Opinion in Urology, vol. 10, no. 1, pp. 29–33, 2000.
[66]  C. J. Sanchez Jr., K. Mende, M. L. Beckius et al., “Biofilm formation by clinical isolates and the implications in chronic infections,” BMC Infectious Diseases, vol. 13, no. 1, article 47, 2013.
[67]  D. Mack, P. Becker, I. Chatterjee et al., “Mechanisms of biofilm formation in Staphylococcus epidermidis and Staphylococcus aureus: functional molecules, regulatory circuits, and adaptive responses,” International Journal of Medical Microbiology, vol. 294, no. 2-3, pp. 203–212, 2004.
[68]  K. Lewis, “Persister cells and the riddle of biofilm survival,” Biochemistry, vol. 70, no. 2, pp. 267–274, 2005.
[69]  J. W. Costerton, L. Montanaro, and C. R. Arciola, “Bacterial communications in implant infections: a target for an intelligence war,” The International Journal of Artificial Organs, vol. 30, no. 9, pp. 757–763, 2007.
[70]  K. Lewis, “Multidrug tolerance of biofilms and persister cells,” Current Topics in Microbiology and Immunology, vol. 322, pp. 107–131, 2008.
[71]  K. Lewis, “Persister cells,” Annual Review of Microbiology, vol. 64, pp. 357–372, 2010.
[72]  S. M. Soto, “Role of efflux pumps in the antibiotic resistance of bacteria embedded in a biofilm,” Virulence, vol. 4, no. 3, pp. 223–229, 2013.
[73]  H. Van Acker, P. Van Dijck, and T. Coenye, “Molecular mechanisms of antimicrobial tolerance and resistance in bacterial and fungal biofilms,” Trends in Microbiology, vol. 22, no. 6, pp. 326–333, 2014.
[74]  K. Lewis, “Riddle of biofilm resistance,” Antimicrobial Agents and Chemotherapy, vol. 45, no. 4, pp. 999–1007, 2001.
[75]  I. Keren, D. Shah, A. Spoering, N. Kaldalu, and K. Lewis, “Specialized persister cells and the mechanism of multidrug tolerance in Escherichia coli,” Journal of Bacteriology, vol. 186, no. 24, pp. 8172–8180, 2004.
[76]  I. Keren, N. Kaldalu, A. Spoering, Y. Wang, and K. Lewis, “Persister cells and tolerance to antimicrobials,” FEMS Microbiology Letters, vol. 230, no. 1, pp. 13–18, 2004.
[77]  M. D. LaFleur, Q. Qi, and K. Lewis, “Patients with long-term oral carriage harbor high-persister mutants of Candida albicans,” Antimicrobial Agents and Chemotherapy, vol. 54, no. 1, pp. 39–44, 2010.
[78]  K. Sauer, A. K. Camper, G. D. Ehrlich, J. W. Costerton, and D. G. Davies, “Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm,” Journal of Bacteriology, vol. 184, no. 4, pp. 1140–1154, 2002.
[79]  N. Cerca, K. K. Jefferson, R. Oliveira, G. B. Pier, and J. Azeredo, “Comparative antibody-mediated phagocytosis of Staphylococcus epidermidis cells grown in a biofilm or in the planktonic state,” Infection and Immunity, vol. 74, pp. 4849–4855, 2006.
[80]  N. Cerca, R. Oliveira, and J. Azeredo, “Susceptibility of Staphylococcus epidermidis planktonic cells and biofilms to the lytic action of staphylococcus bacteriophage K,” Letters in Applied Microbiology, vol. 45, no. 3, pp. 313–317, 2007.
[81]  P. Stoodley, D. Debeer, and Z. Lewandowski, “Liquid flow in biofilm systems,” Applied and Environmental Microbiology, vol. 60, no. 8, pp. 2711–2716, 1994.
[82]  A. E. Kirby, K. Garner, and B. R. Levin, “The relative contributions of physical structure and cell density to the antibiotic susceptibility of bacteria in biofilms,” Antimicrobial Agents and Chemotherapy, vol. 56, no. 6, pp. 2967–2975, 2012.
[83]  C. Vuong, S. Kocianova, J. M. Voyich et al., “A crucial role for exopolysaccharide modification in bacterial biofilm formation, immune evasion, and virulence,” Journal of Biological Chemistry, vol. 279, no. 52, pp. 54881–54886, 2004.
[84]  V. J. Savage, I. Chopra, and A. J. O'Neill, “Staphylococcus aureus biofilms promote horizontal transfer of antibiotic resistance,” Antimicrobial Agents and Chemotherapy, vol. 57, no. 4, pp. 1968–1970, 2013.
[85]  T. Ichimiya, K. Takeoka, K. Hiramatsu, K. Hirai, T. Yamasaki, and M. Nasu, “The influence of azithromycin on the biofilm formation of Pseudomonas aeruginosa in vitro,” Chemotherapy, vol. 42, no. 3, pp. 186–191, 1996.
[86]  J. Parra-Ruiz, C. Vidaillac, and M. J. Rybak, “Macrolides and staphylococcal biofilms,” Revista Espa?ola de Quimioterapia, vol. 25, no. 1, pp. 10–16, 2012.
[87]  M. Sano, T. Hirose, M. Nishimura, S. Takahashi, M. Matsukawa, and T. Tsukamoto, “Inhibitory action of clarithromycin on glycocalyx produced by MRSA,” Journal of Infection and Chemotherapy, vol. 5, no. 1, pp. 10–15, 1999.
[88]  S. Fujimura, T. Sato, T. Kikuchi, J. Zaini, K. Gomi, and A. Watanabe, “Efficacy of clarithromycin plus vancomycin in mice with implant-related infection caused by biofilm-forming Staphylococcus aureus,” Journal of Orthopaedic Science, vol. 14, no. 5, pp. 658–661, 2009.
[89]  O. Yamasaki, H. Akiyama, Y. Toi, and J. Arata, “A combination of roxithromycin and imipenem as an antimicrobial strategy against biofilms formed by Staphylococcus aureus,” Journal of Antimicrobial Chemotherapy, vol. 48, no. 4, pp. 573–577, 2001.
[90]  Q. Wang, F. Sun, Y. Liu, L. Xiong, L. Xie, and P. Xia, “Enhancement of biofilm formation by subinhibitory concentrations of macrolides in icaADBC -positive and -negative clinical isolates of Staphylococcus epidermidis,” Antimicrobial Agents and Chemotherapy, vol. 54, no. 6, pp. 2707–2711, 2010.
[91]  T. M. Hamill, B. F. Gilmore, D. S. Jones, and S. P. Gorman, “Strategies for the development of the urinary catheter,” Expert Review of Medical Devices, vol. 4, no. 2, pp. 215–225, 2007.
[92]  D. G. Ahearn, D. T. Grace, M. J. Jennings et al., “Effects of hydrogel/silver coatings on in vitro adhesion to catheters of bacteria associated with urinary tract infections,” Current Microbiology, vol. 41, no. 2, pp. 120–125, 2000.
[93]  G. Regev-Shoshani, M. Ko, A. Crowe, and Y. Av-Gay, “Comparative efficacy of commercially available and emerging antimicrobial urinary catheters against bacteriuria caused by E. coli in vitro,” Urology, vol. 78, no. 2, pp. 334–340, 2011.
[94]  C. de la Fuente, F. Reffuveille, L. Fernández, and R. E. W. Hancock, “Bacterial biofilm development as a multicellular adaptation: antibiotic resistance and new therapeutic strategies,” Current Opinion in Microbiology, vol. 16, no. 5, pp. 580–589, 2013.
[95]  E. Bull, C. P. Chilton, C. A. L. Gould, and T. M. Sutton, “Single-blind, randomised, parallel group study of the Bard Biocath catheter and a silicone elastomer coated catheter,” British Journal of Urology, vol. 68, no. 4, pp. 394–399, 1991.
[96]  K. A. Kazmierska, R. Thompson, N. Morris, A. Long, and T. Ciach, “In vitro multicompartmental bladder model for assessing blockage of urinary catheters: effect of hydrogel coating on dynamics of Proteus mirabilis growth,” Urology, vol. 76, no. 2, pp. 515.e15–515.e20, 2010.
[97]  M. E. Rupp, T. Fitzgerald, N. Marion et al., “Effect of silver-coated urinary catheters: efficacy, cost-effectiveness, and antimicrobial resistance,” American Journal of Infection Control, vol. 32, no. 8, pp. 445–450, 2004.
[98]  K. Davenport and F. X. Keeley, “Evidence for the use of silver-alloy-coated urethral catheters,” Journal of Hospital Infection, vol. 60, no. 4, pp. 298–303, 2005.
[99]  I. Raad, J. A. Mohamed, R. A. Reitzel et al., “Improved antibiotic-impregnated catheters with extended-spectrum activity against resistant bacteria and fungi,” Antimicrobial Agents and Chemotherapy, vol. 56, no. 2, pp. 935–941, 2012.
[100]  J. Thornton, N. J. Todd, and N. R. Webster, “Central venous line sepsis in the intensive care unit. A study comparing antibiotic coated catheters with plain catheters,” Anaesthesia, vol. 51, no. 11, pp. 1018–1020, 1996.
[101]  J. Lellouche, E. Kahana, S. Elias, A. Gedanken, and E. Banin, “Antibiofilm activity of nanosized magnesium fluoride,” Biomaterials, vol. 30, no. 30, pp. 5969–5978, 2009.
[102]  J. Lellouche, A. Friedman, A. Gedanken, and E. Banin, “Antibacterial and antibiofilm properties of yttrium fluoride nanoparticles,” International Journal of Nanomedicine, vol. 7, pp. 5611–5624, 2012.
[103]  A. Roy, S. S. Gauri, M. Bhattacharya, and J. Bhattacharya, “Antimicrobial activity of CaO nanoparticles,” Journal of Biomedical Nanotechnology, vol. 9, no. 9, pp. 1570–1578, 2013.
[104]  P. D. Fey, “Modality of bacterial growth presents unique targets: how do we treat biofilm-mediated infections?” Current Opinion in Microbiology, vol. 13, no. 5, pp. 610–615, 2010.
[105]  K. Markowska, A. M. Grudniak, and K. I. Wolska, “Silver nanoparticles as an alternative strategy against bacterial biofilms,” Acta Biochimica Polonica, vol. 60, no. 4, pp. 523–530, 2013.
[106]  J. W. Costerton, B. Ellis, K. Lam, F. Johnson, and A. E. Khoury, “Mechanism of electrical enhancement of efficacy of antibiotics in killing biofilm bacteria,” Antimicrobial Agents and Chemotherapy, vol. 38, no. 12, pp. 2803–2809, 1994.
[107]  J. Jass and H. M. Lappin-Scott, “The efficacy of antibiotics enhanced by electrical currents against Pseudomonas aeruginosa biofilms,” The Journal of Antimicrobial Chemotherapy, vol. 38, no. 6, pp. 987–1000, 1996.
[108]  A. Chakravarti, S. Gangodawila, M. J. Long, N. S. Morris, A. R. E. Blacklock, and D. J. Stickler, “An electrified catheter to resist encrustation by proteus mirabilis biofilm,” Journal of Urology, vol. 174, no. 3, pp. 1129–1132, 2005.
[109]  N. S. Morris and D. J. Stickler, “The effect of urease inhibitors on the encrustation of urethral catheters,” Urological Research, vol. 26, no. 4, pp. 275–279, 1998.
[110]  N. S. Morris and D. J. Stickler, “Encrustation of indwelling urethral catheters by Proteus mirabilis biofilms growing in human urine,” Journal of Hospital Infection, vol. 39, no. 3, pp. 227–234, 1998.
[111]  A. Torzewska and A. Rozalski, “Inhibition of crystallization caused by Proteus mirabilis during the development of infectious urolithiasis by various phenolic substances,” Microbiology Research, vol. 169, no. 7–8, pp. 579–584, 2014.
[112]  H. Zhu, X. Sun, J. Lu, M. Wang, Y. Fang, and W. Ge, “The effect of plum juice on the prevention of struvite calculus formation in vitro,” BJU International, vol. 110, no. 8, pp. E362–E367, 2012.
[113]  Z. Amtul, C. Follmer, S. Mahboob et al., “Germa-γ-lactones as novel inhibitors of bacterial urease activity,” Biochemical and Biophysical Research Communications, vol. 356, no. 2, pp. 457–463, 2007.
[114]  T. K. Lu and J. J. Collins, “Dispersing biofilms with engineered enzymatic bacteriophage,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 27, pp. 11197–11202, 2007.
[115]  Y. Itoh, X. Wang, B. Joseph Hinnebusch, J. F. Preston III, and T. Romeo, “Depolymerization of β-1,6-N-acetyl-D-glucosamine disrupts the integrity of diverse bacterial biofilms,” Journal of Bacteriology, vol. 187, no. 1, pp. 382–387, 2005.
[116]  K. Sambanthamoorthy, R. E. Sloup, V. Parashar et al., “Identification of small molecules that antagonize diguanylate cyclase enzymes to inhibit biofilm formation,” Antimicrobial Agents and Chemotherapy, vol. 56, no. 10, pp. 5202–5211, 2012.
[117]  K. Sambanthamoorthy, C. Luo, N. Pattabiraman et al., “Identification of small molecules inhibiting diguanylate cyclases to control bacterial biofilm development,” Biofouling, vol. 30, no. 1, pp. 17–28, 2013.
[118]  C. Beaulac, S. Sachetelli, and J. Lagace, “In-vitro bactericidal efficacy of sub-MIC concentrations of liposome-encapsulated antibiotic against Gram-negative and Gram-positive bacteria,” Journal of Antimicrobial Chemotherapy, vol. 41, no. 1, pp. 35–41, 1998.
[119]  S. Tamilvanan, N. Venkateshan, and A. Ludwig, “The potential of lipid- and polymer-based drug delivery carriers for eradicating biofilm consortia on device-related nosocomial infections,” Journal of Controlled Release, vol. 128, no. 1, pp. 2–22, 2008.
[120]  M. W. Fountain, S. J. Weiss, A. G. Fountain, A. Shen, and R. P. Lenk, “Treatment of Brucella canis and Brucella abortus in vitro and in vivo by stable plurilamellar vesicle-encapsulated aminoglycosides,” The Journal of Infectious Diseases, vol. 152, no. 3, pp. 529–535, 1985.
[121]  C. I. Price, J. W. Horton, and C. R. Baxter, “Liposome encapsulation: a method for enhancing the effectiveness of local antibiotics,” Surgery, vol. 115, no. 4, pp. 480–487, 1994.
[122]  J. D. Berman, G. Ksionski, W. L. Chapman, V. B. Waits, and W. L. Hanson, “Activity of amphotericin B cholesterol dispersion (Amphocil) in experimental visceral leishmaniasis,” Antimicrobial Agents and Chemotherapy, vol. 36, no. 9, pp. 1978–1980, 1992.
[123]  E. W. M. van Etten, C. van den Heuvel-de Groot, and I. A. J. M. Bakker-Woudenberg, “Efficacies of amphotericin B-desoxycholate (Fungizone), liposomal amphotericin B (AmBisome) and fluconazole in the treatment of systemic candidosis in immunocompetent and leucopenic mice,” The Journal of Antimicrobial Chemotherapy, vol. 32, no. 5, pp. 723–739, 1993.
[124]  B. Giwercman, E. T. Jensen, N. Hoiby, A. Kharazmi, and J. W. Costerton, “Induction of beta-lactamase production in Pseudomonas aeruginosa biofilm,” Antimicrobial Agents and Chemotherapy, vol. 35, no. 5, pp. 1008–1010, 1991.
[125]  M. Alipour, Z. E. Suntres, R. M. Lafrenie, and A. Omri, “Attenuation of Pseudomonas aeruginosa virulence factors and biofilms by co-encapsulation of bismuth-ethanedithiol with tobramycin in liposomes,” Journal of Antimicrobial Chemotherapy, vol. 65, no. 4, Article ID dkq036, pp. 684–693, 2010.
[126]  M. Alhajlan, M. Alhariri, and A. Omri, “Efficacy and safety of liposomal clarithromycin and its effect on Pseudomonas aeruginosa virulence factors,” Antimicrobial Agents and Chemotherapy, vol. 57, no. 6, pp. 2694–2704, 2013.
[127]  B. W. Trautner, R. O. Darouiche, R. A. Hull, S. Hull, and J. I. Thornby, “Pre-inoculation of urinary catheters with Escherichia coli 83972 inhibits catheter colonization by Enterococcus faecalis,” Journal of Urology, vol. 167, no. 1, pp. 375–379, 2002.
[128]  B. W. Trautner, R. A. Hull, and R. O. Darouiche, “Escherichia coli 83972 inhibits catheter adherence by a broad spectrum of uropathogens,” Urology, vol. 61, no. 5, pp. 1059–1062, 2003.
[129]  P. Andersson, I. Engberg, G. Lidin-Janson et al., “Persistence of Escherichia coli bacteriuria is not determined by bacterial adherence,” Infection and Immunity, vol. 59, no. 9, pp. 2915–2921, 1991.
[130]  G. Otto, M. Magnusson, M. Svensson, J. Braconier, and C. Svanborg, “Pap genotype and P fimbrial expression in Escherichia coli causing bacteremic and nonbacteremic febrile urinary tract infection,” Clinical Infectious Diseases, vol. 32, no. 11, pp. 1523–1531, 2001.
[131]  R. A. Hull, W. H. Donovan, M. del Terzo, C. Stewart, M. Rogers, and R. O. Darouiche, “Role of type 1 fimbria- and P fimbria-specific adherence in colonization of the neurogenic human bladder by Escherichia coli,” Infection and Immunity, vol. 70, no. 11, pp. 6481–6484, 2002.
[132]  A. Prasad, M. E. Cevallos, S. Riosa, R. O. Darouiche, and B. W. Trautner, “A bacterial interference strategy for prevention of UTI in persons practicing intermittent catheterization,” Spinal Cord, vol. 47, no. 7, pp. 565–569, 2009.
[133]  R. O. Darouiche, J. I. Thornby, C. Cerra-Stewart, W. H. Donovan, and R. A. Hull, “Bacterial interference for prevention of urinary tract infection: a prospective, randomized, placebo-controlled, double-blind pilot trial,” Clinical Infectious Diseases, vol. 41, no. 10, pp. 1531–1534, 2005.
[134]  L. Carson, S. P. Gorman, and B. F. Gilmore, “The use of lytic bacteriophages in the prevention and eradication of biofilms of Proteus mirabilis and Escherichia coli,” FEMS Immunology and Medical Microbiology, vol. 59, no. 3, pp. 447–455, 2010.
[135]  S. O'Flaherty, R. P. Ross, W. Meaney, G. F. Fitzgerald, M. F. Elbreki, and A. Coffey, “Potential of the Polyvalent anti-Staphylococcus bacteriophage K for control of antibiotic-resistant staphylococci from hospitals,” Applied and Environmental Microbiology, vol. 71, no. 4, pp. 1836–1842, 2005.
[136]  K. A. Hughes, I. W. Sutherland, and M. V. Jones, “Biofilm susceptibility to bacteriophage attack: the role of phage-borne polysaccharide depolymerase,” Microbiology, vol. 144, no. 11, pp. 3039–3047, 1998.
[137]  K. A. Hughes, I. W. Sutherland, J. Clark, and M. V. Jones, “Bacteriophage and associated polysaccharide depolymerases—novel tools for study of bacterial biofilms,” Journal of Applied Microbiology, vol. 85, no. 3, pp. 583–590, 1998.
[138]  S. D. Hanton, “Mass spectrometry of polymers and polymer surfaces,” Chemical Reviews, vol. 101, no. 2, pp. 527–569, 2001.
[139]  R. M. Donlan, “Preventing biofilms of clinically relevant organisms using bacteriophage,” Trends in Microbiology, vol. 17, no. 2, pp. 66–72, 2009.
[140]  M. M. Doolittle, J. J. Cooney, and D. E. Caldwell, “Tracing the interaction of bacteriophage with bacterial biofilms using fluorescent and chromogenic probes,” Journal of Industrial Microbiology, vol. 16, no. 6, pp. 331–341, 1996.
[141]  J. J. Curtin and R. M. Donlan, “Using bacteriophages to reduce formation of catheter-associated biofilms by Staphylococcus epidermidis,” Antimicrobial Agents and Chemotherapy, vol. 50, no. 4, pp. 1268–1275, 2006.
[142]  W. Fu, T. Forster, O. Mayer, J. J. Curtin, S. M. Lehman, and R. M. Donlan, “Bacteriophage cocktail for the prevention of biofilm formation by Pseudomonas aeruginosa on catheters in an in vitro model system,” Antimicrobial Agents and Chemotherapy, vol. 54, no. 1, pp. 397–404, 2010.
[143]  S. Swift, J. P. Throup, P. Williams, G. P. Salmond, and G. S. Stewart, “Quorum sensing: a population-density component in the determination of bacterial phenotype,” Trends in Biochemical Sciences, vol. 21, no. 6, pp. 214–219, 1996.
[144]  V. Lazar, “Quorum sensing in biofilms—how to destroy the bacterial citadels or their cohesion/power?” Anaerobe, vol. 17, no. 6, pp. 280–285, 2011.
[145]  L. Keller and M. G. Surette, “Communication in bacteria: an ecological and evolutionary perspective,” Nature Reviews Microbiology, vol. 4, no. 4, pp. 249–258, 2006.
[146]  T. B. Rasmussen and M. Givskov, “Quorum-sensing inhibitors as anti-pathogenic drugs,” International Journal of Medical Microbiology, vol. 296, no. 2-3, pp. 149–161, 2006.
[147]  M. Hentzer and M. Givskov, “Pharmacological inhibition of quorum sensing for the treatment of chronic bacterial infections,” Journal of Clinical Investigation, vol. 112, no. 9, pp. 1300–1307, 2003.
[148]  M. Hentzer, L. Eberl, J. Nielsen, and M. Givskov, “Quorum sensing: a novel target for the treatment of biofilm infections,” BioDrugs: Clinical Immunotherapeutics, Biopharmaceuticals and Gene Therapy, vol. 17, no. 4, pp. 241–250, 2003.
[149]  M. Hentzer, H. Wu, J. B. Andersen et al., “Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors,” The EMBO Journal, vol. 22, no. 15, pp. 3803–3815, 2003.
[150]  T. B. Rasmussen, T. Bjarnsholt, M. E. Skindersoe et al., “Screening for quorum-sensing inhibitors (QSI) by use of a novel genetic system, the QSI selector,” Journal of Bacteriology, vol. 187, no. 5, pp. 1799–1814, 2005.
[151]  T. B. Rasmussen, M. E. Skindersoe, T. Bjarnsholt et al., “Identity and effects of quorum-sensing inhibitors produced by Penicillium species,” Microbiology, vol. 151, no. 5, pp. 1325–1340, 2005.
[152]  G. J. Lyon, P. Mayville, T. W. Muir, and R. P. Novick, “Rational design of a global inhibitor of the virulence response in Staphylococcus aureus, based in part on localization of the site of inhibition to the receptor-histidine kinase, AgrC,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 24, pp. 13330–13335, 2000.
[153]  N. Balaban, A. Giacometti, O. Cirioni et al., “Use of the quorum-sensing inhibitor RNAIII-inhibiting peptide to prevent biofilm formation in vivo by drug-resistant Staphylococcus epidermidis,” Journal of Infectious Diseases, vol. 187, no. 4, pp. 625–630, 2003.
[154]  N. Balaban, Y. Gov, A. Giacometti et al., “A chimeric peptide composed of a dermaseptin derivative and an RNA III-inhibiting peptide prevents graft-associated infections by antibiotic-resistant staphylococci,” Antimicrobial Agents and Chemotherapy, vol. 48, no. 7, pp. 2544–2550, 2004.
[155]  J. C. Carmen, B. L. Roeder, J. L. Nelson et al., “Treatment of biofilm infections on implants with low-frequency ultrasound and antibiotics,” The American Journal of Infection Control, vol. 33, no. 2, pp. 78–82, 2005.
[156]  A. M. Rediske, B. L. Roeder, J. L. Nelson et al., “Pulsed ultrasound enhances the killing of Escherichia coli biofilms by aminoglycoside antibiotics in vivo,” Antimicrobial Agents and Chemotherapy, vol. 44, no. 3, pp. 771–772, 2000.
[157]  Z. Hazan, J. Zumeris, H. Jacob et al., “Effective prevention of microbial biofilm formation on medical devices by low-energy surface acoustic waves,” Antimicrobial Agents and Chemotherapy, vol. 50, no. 12, pp. 4144–4152, 2006.
[158]  N. Rafsanjany, M. Lechtenberg, F. Petereit, and A. Hensel, “Antiadhesion as a functional concept for protection against uropathogenic Escherichia coli: in vitro studies with traditionally used plants with antiadhesive activity against uropathognic Escherichia coli,” Journal of Ethnopharmacology, vol. 145, no. 2, pp. 591–597, 2013.
[159]  Z. Hensel and J. Xiao, “A mechanism for stochastic decision making by bacteria,” ChemBioChem, vol. 10, no. 6, pp. 974–976, 2009.
[160]  G. L?hr, T. Beikler, A. Podbielski, K. Standar, S. Redanz, and A. Hensel, “Polyphenols from Myrothamnus flabellifolia Welw. Inhibit in vitro adhesion of Porphyromonas gingivalis and exert anti-inflammatory cytoprotective effects in KB cells,” Journal of Clinical Periodontology, vol. 38, no. 5, pp. 457–469, 2011.
[161]  R. G. Jepson, L. Mihaljevic, and J. Craig, “Cranberries for preventing urinary tract infections,” Cochrane Database of Systematic Reviews, vol. 3, Article ID CD001321, 2001.
[162]  L. Y. Foo, Y. Lu, A. B. Howell, and N. Vorsa, “The structure of cranberry proanthocyanidins which inhibit adherence of uropathogenic P-fimbriated Escherichia coli in vitro,” Phytochemistry, vol. 54, no. 2, pp. 173–181, 2000.
[163]  L. Y. Foo, Y. Lu, A. B. Howell, and N. Vorsa, “A-type proanthocyanidin trimers from cranberry that inhibit adherence of uropathogenic P-fimbriated Escherichia coli,” Journal of Natural Products, vol. 63, no. 9, pp. 1225–1228, 2000.
[164]  C. K. Cusumano, J. S. Pinkner, Z. Han et al., “Treatment and prevention of urinary tract infection with orally active FimH inhibitors,” Science Translational Medicine, vol. 3, pp. 109–ra115, 2011.
[165]  A. Barras, F. A. Martin, O. Bande et al., “Glycan-functionalized diamond nanoparticles as potent E. coli anti-adhesives,” Nanoscale, vol. 5, no. 6, pp. 2307–2316, 2013.
[166]  J. Vila and S. M. Soto, “Salicylate increases the expression of mar A and reduces in vitro biofilm formation in uropathogenic Escherichia coli by decreasing type 1 fimbriae expression,” Virulence, vol. 3, pp. 280–285, 2012.
[167]  O. Rendueles, L. Travier, P. Latour-Lambert et al., “Screening of Escherichia coli species biodiversity reveals new biofilm-associated antiadhesion polysaccharides,” mBio, vol. 2, no. 3, pp. 1–12, 2011.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133