Neural crest cells are a fascinating embryonic cell type, unique to vertebrates, which arise within the central nervous system but emigrate soon after its formation and migrate to numerous and sometimes distant locations in the periphery. Following their migratory phase, they differentiate into diverse derivatives ranging from peripheral neurons and glia to skin melanocytes and craniofacial cartilage and bone. The molecular underpinnings underlying initial induction of prospective neural crest cells at the neural plate border to their migration and differentiation have been modeled in the form of a putative gene regulatory network. This review describes experiments performed in my laboratory in the past few years aimed to test and elaborate this gene regulatory network from both an embryonic and evolutionary perspective. The rapid advances in genomic technology in the last decade have greatly expanded our knowledge of important transcriptional inputs and epigenetic influences on neural crest development. The results reveal new players and new connections in the neural crest gene regulatory network and suggest that it has an ancient origin at the base of the vertebrate tree. 1. Introduction The neural crest is an embryonic cell population characterized by its multipotency, extensive migratory ability, and capacity to form multiple and diverse derivatives [1]. Initially arising within the developing central nervous system (CNS) of vertebrate embryos, these cells depart from the CNS by undergoing an epithelial to mesenchymal transition (EMT) similar to that undertaken by cancer cells during metastasis [2]. Neural crest cells invade the periphery, migrating along characteristic pathways to diverse locations where they differentiate into numerous derivatives. Just as the CNS is regionalized along the neural axis to form the brain in the anterior portion of the body and the spinal cord in trunk region, the neural crest can also be subdivided into different populations along the body axis [1] which form some overlapping as well as some divergent derivatives (Figure 1). Cranial neural crest cells arise in the head region of the embryo. In the chick embryo, on which this review focuses, they migrate from the forebrain/midbrain as a large swathe of cells which expands like a cobra’s hood. At the level of the hindbrain, however, they migrate in segmental streams to populate elements of the facial skeleton, including the upper and lower jaw as well as bones of the neck. Other cranial crest cells contribute to all of the glia and some neurons of cranial sensory
References
[1]
N. M. LeDouarin, The Neural Crest, Cambridge University Press, New York, 1982.
[2]
M. A. Nieto, “Epithelial plasticity: a common theme in embryonic and cancer cells,” Science, vol. 342, no. 6159, 2013.
[3]
C. Gans and R. G. Northcutt, “Neural crest and the origin of vertebrates: a new head,” Science, vol. 220, no. 4594, pp. 268–274, 1983.
[4]
D. Meulemans and M. Bronner-Fraser, “Gene-regulatory interactions in neural crest evolution and development,” Developmental Cell, vol. 7, no. 3, pp. 291–299, 2004.
[5]
T. Sauka-Spengler and M. Bronner-Fraser, “A gene regulatory network orchestrates neural crest formation,” Nature Reviews Molecular Cell Biology, vol. 9, no. 7, pp. 557–568, 2008.
[6]
T. Sauka-Spengler and M. Bronner, “SnapShot: neural crest,” Cell, vol. 143, no. 3, pp. 486–e1, 2010.
[7]
J. D. Moury and A. G. Jacobson, “The origins of neural crest cells in the axolotl,” Developmental Biology, vol. 141, no. 2, pp. 243–253, 1990.
[8]
M. A. J. Selleck and M. Bronner-Fraser, “Origins of the avian neural crest: the role of neural plate-epidermal interactions,” Development, vol. 121, no. 2, pp. 525–538, 1995.
[9]
M. E. Dickinson, M. A. J. Selleck, A. P. McMahon, and M. Bronner-Fraser, “Dorsalization of the neural tube by the non-neural ectoderm,” Development, vol. 121, no. 7, pp. 2099–2106, 1995.
[10]
K. F. Liem Jr., G. Tremml, H. Roelink, and T. M. Jessell, “Dorsal differentiation of neural plate cells induced by BMP-mediated signals from epidermal ectoderm,” Cell, vol. 82, no. 6, pp. 969–979, 1995.
[11]
M. I. García-Castro, C. Marcelle, and M. Bronner-Fraser, “Ectodermal Wnt function as a neural crest inducer,” Science, vol. 297, no. 5582, pp. 848–851, 2002.
[12]
M. L. Basch, M. Bronner-Fraser, and M. I. García-Castro, “Specification of the neural crest occurs during gastrulation and requires Pax7,” Nature, vol. 441, no. 7090, pp. 218–222, 2006.
[13]
P. H. Strobl-Mazzulla, T. Sauka-Spengler, and M. Bronner-Fraser, “Histone demethylase JmjD2A regulates neural crest specification,” Developmental Cell, vol. 19, no. 3, pp. 460–468, 2010.
[14]
N. Hu, P. Strobl-Mazzulla, T. Sauka-Spengler, and M. E. Bronner, “DNA methyltransferase3A as a molecular switch mediating the neural tube-to-neural crest fate transition,” Genes and Development, vol. 26, no. 21, pp. 2380–2385, 2012.
[15]
P. Betancur, M. Bronner-Fraser, and T. Sauka-Spengler, “Genomic code for Sox10 activation reveals a key regulatory enhancer for cranial neural crest,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 8, pp. 3570–3575, 2010.
[16]
P. Betancur, T. Sauka-Spengler, and M. Bronner, “A sox10 enhancer element common to the otic placode and neural crest is activated by tissue-specific paralogs,” Development, vol. 138, no. 17, pp. 3689–3698, 2011.
[17]
M. S. Sim?es-Costa, S. J. McKeown, J. Tan-Cabugao, T. Sauka-Spengler, and M. E. Bronner, “Dynamic and differential regulation of stem cell factor FoxD3 in the neural crest is encrypted in the genome,” PLoS Genetics, vol. 8, no. 12, Article ID e1003142, 2012.
[18]
M. Barembaum and M. E. Bronner, “Identification and dissection of a key enhancer mediating cranial neural crest specific expression of transcription factor, Ets-1,” Developmental Biology, vol. 382, no. 2, pp. 567–575.
[19]
M. Simoes-Costa and M. E. Bronner, “Insights into neural crest development and evolution from genomic analysis,” Genome Research, vol. 23, pp. 1069–1080, 2013.
[20]
M. S. Adams, L. S. Gammill, and M. Bronner-Fraser, “Discovery of transcription factors and other candidate regulators of neural crest development,” Developmental Dynamics, vol. 237, no. 4, pp. 1021–1033, 2008.
[21]
L. Gammill and M. Bronner-Fraser, “A genomic analysis of neural crest induction,” Development, vol. 129, pp. 5731–5741, 2002.
[22]
J.-K. Yu, D. Meulemans, S. J. McKeown, and M. Bronner-Fraser, “Insights from the amphioxus genome on the origin of vertebrate neural crest,” Genome Research, vol. 18, no. 7, pp. 1127–1132, 2008.
[23]
W. R. Jeffery, A. G. Strickler, and Y. Yamamoto, “Migratory neural crest-like cells form body pigmentation in a urochordate embryo,” Nature, vol. 431, no. 7009, pp. 696–699, 2004.
[24]
P. B. Abitua, E. Wagner, I. A. Navarrete, and M. Levine, “Identification of a rudimentary neural crest in a non-vertebrate chordate,” Nature, vol. 491, no. 7427, pp. 104–107, 2012.
[25]
T. Sauka-Spengler, D. Meulemans, M. Jones, and M. Bronner-Fraser, “Ancient evolutionary origin of the neural crest gene regulatory network,” Developmental Cell, vol. 13, no. 3, pp. 405–420, 2007.