全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Characterization of MORE AXILLARY GROWTH Genes in Populus

DOI: 10.1371/journal.pone.0102757

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background Strigolactones are a new class of plant hormones that play a key role in regulating shoot branching. Studies of branching mutants in Arabidopsis, pea, rice and petunia have identified several key genes involved in strigolactone biosynthesis or signaling pathway. In the model plant Arabidopsis, MORE AXILLARY GROWTH1 (MAX1), MAX2, MAX3 and MAX4 are four founding members of strigolactone pathway genes. However, little is known about the strigolactone pathway genes in the woody perennial plants. Methodology/Principal Finding Here we report the identification of MAX homologues in the woody model plant Populus trichocarpa. We identified the sequence homologues for each MAX protein in P. trichocarpa. Gene expression analysis revealed that Populus MAX paralogous genes are differentially expressed across various tissues and organs. Furthermore, we showed that Populus MAX genes could complement or partially complement the shoot branching phenotypes of the corresponding Arabidopsis max mutants. Conclusion/Significance This study provides genetic evidence that strigolactone pathway genes are likely conserved in the woody perennial plants and lays a foundation for further characterization of strigolactone pathway and its functions in the woody perennial plants.

References

[1]  Gomez-Roldan V, Fermas S, Brewer PB, Puech-Pages V, Dun EA, et al. (2008) Strigolactone inhibition of shoot branching. Nature 455: 189–194. doi: 10.1038/nature07271
[2]  Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T, et al. (2008) Inhibition of shoot branching by new terpenoid plant hormones. Nature 455: 195–200. doi: 10.1038/nature07272
[3]  Akiyama K, Matsuzaki K, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435: 824–827. doi: 10.1038/nature03608
[4]  Besserer A, Puech-Pages V, Kiefer P, Gomez-Roldan V, Jauneau A, et al. (2006) Strigolactones stimulate arbuscular mycorrhizal fungi by activating mitochondria. PLoS Biol 4: 1239–1247. doi: 10.1371/journal.pbio.0040226
[5]  Yoneyama K, Xie XN, Kusumoto D, Sekimoto H, Sugimoto Y, et al. (2007) Nitrogen deficiency as well as phosphorus deficiency in sorghum promotes the production and exudation of 5-deoxystrigol, the host recognition signal for arbuscular mycorrhizal fungi and root parasites. Planta 227: 125–132. doi: 10.1007/s00425-007-0600-5
[6]  Yoneyama K, Yoneyama K, Takeuchi Y, Sekimoto H (2007) Phosphorus deficiency in red clover promotes exudation of orobanchol, the signal for mycorrhizal symbionts and germination stimulant for root parasites. Planta 225: 1031–1038. doi: 10.1007/s00425-006-0410-1
[7]  Lopez-Raez JA, Charnikhova T, Gomez-Roldan V, Matusova R, Kohlen W, et al. (2008) Tomato strigolactones are derived from carotenoids and their biosynthesis is promoted by phosphate starvation. New Phytol 178: 863–874. doi: 10.1111/j.1469-8137.2008.02406.x
[8]  Umehara M, Hanada A, Magome H, Takeda-Kamiya N, Yamaguchi S (2010) Contribution of strigolactones to the inhibition of tiller bud outgrowth under phosphate deficiency in rice. Plant Cell Physiol 51: 1118–1126. doi: 10.1093/pcp/pcq084
[9]  Kohlen W, Charnikhova T, Liu Q, Bours R, Domagalska MA, et al. (2011) Strigolactones are transported through the xylem and play a key role in shoot architectural response to phosphate deficiency in nonarbuscular mycorrhizal host Arabidopsis. Plant Physiol 155: 974–987. doi: 10.1104/pp.110.164640
[10]  Mayzlish-Gati E, De-Cuyper C, Goormachtig S, Beeckman T, Vuylsteke M, et al. (2012) Strigolactones are involved in root response to low phosphate conditions in Arabidopsis. Plant Physiol 160: 1329–1341. doi: 10.1104/pp.112.202358
[11]  Yoneyama K, Xie XN, Kim HI, Kisugi T, Nomura T, et al. (2012) How do nitrogen and phosphorus deficiencies affect strigolactone production and exudation? Planta 235: 1197–1207. doi: 10.1007/s00425-011-1568-8
[12]  Brewer PB, Koltai H, Beveridge CA (2013) Diverse roles of strigolactones in plant development. Mol Plant 6: 18–28. doi: 10.1093/mp/sss130
[13]  Czarnecki O, Yang J, Weston DJ, Tuskan GA, Chen JG (2013) A dual role of strigolactones in phosphate acquisition and utilization in plants. Int J Mol Sci 14: 7681–7701. doi: 10.3390/ijms14047681
[14]  Foo E, Yoneyama K, Hugill CJ, Quittenden LJ, Reid JB (2013) Strigolactones and the regulation of pea symbioses in response to nitrate and phosphate deficiency. Mol Plant 6: 76–87. doi: 10.1093/mp/sss115
[15]  Beveridge CA, Kyozuka J (2010) New genes in the strigolactone-related shoot branching pathway. Curr Opin Plant Biol 13: 34–39. doi: 10.1016/j.pbi.2009.10.003
[16]  Xie XN, Yoneyama K, Yoneyama K (2010) The strigolactone story. Annu Rev Phytopathol 48: 93–117. doi: 10.1146/annurev-phyto-073009-114453
[17]  Domagalska MA, Leyser O (2011) Signal integration in the control of shoot branching. Nat Rev Mol Cell Biol 12: 211–221. doi: 10.1038/nrm3088
[18]  Koltai H (2011) Strigolactones are regulators of root development. New Phytol 190: 545–549. doi: 10.1111/j.1469-8137.2011.03678.x
[19]  Wang YH, Li JY (2011) Branching in rice. Curr Opin Plant Biol 14: 94–99. doi: 10.1016/j.pbi.2010.11.002
[20]  Seto Y, Kameoka H, Yamaguchi S, Kyozuka J (2012) Recent advances in strigolactone research: chemical and biological aspects. Plant Cell Physiol 53: 1843–1853. doi: 10.1093/pcp/pcs142
[21]  Tsuchiya Y, McCourt P (2012) Strigolactones as small molecule communicators. Mol Biosyst 8: 464–469. doi: 10.1039/c1mb05195d
[22]  Mason MG (2013) Emerging trends in strigolactone research. New Phytol 198: 975–977. doi: 10.1111/nph.12268
[23]  de Saint Germain A, Bonhomme S, Boyer FD, Rameau C (2013) Novel insights into strigolactone distribution and signalling. Curr Opin Plant Biol 16: 583–589. doi: 10.1016/j.pbi.2013.06.007
[24]  Rasmussen A, Depuydt S, Goormachtig S, Geelen D (2013) Strigolactones fine-tune the root system. Planta 238: 615–626. doi: 10.1007/s00425-013-1911-3
[25]  Ruyter-Spira C, Al-Babili S, van der Krol S, Bouwmeester H (2013) The biology of strigolactones. Trends Plant Sci 18: 72–83. doi: 10.1016/j.tplants.2012.10.003
[26]  Janssen BJ, Drummond RS, Snowden KC (2014) Regulation of axillary shoot development. Curr Opin Plant Biol 17: 28–35. doi: 10.1016/j.pbi.2013.11.004
[27]  Waldie T, McCulloch H, Leyser O (2014) Strigolactones and the control of plant development: lessons from shoot branching. Plant J. 2014 Feb 25. doi:10.1111/tpj.12488 [Epub ahead of print].
[28]  Zheng Z, Germain Ade S, Chory J (2014) Unfolding the mysteries of strigolactone signaling. Mol Plant 7: 934–936. doi: 10.1093/mp/ssu021
[29]  Booker J, Auldridge M, Wills S, McCarty D, Klee H, et al. (2004) MAX3/CCD7 is a carotenoid cleavage dioxygenase required for the synthesis of a novel plant signaling molecule. Curr Biol 14: 1232–1238. doi: 10.1016/j.cub.2004.06.061
[30]  Booker J, Sieberer T, Wright W, Williamson L, Willett B, et al. (2005) MAX1 encodes a cytochrome P450 family member that acts downstream of MAX3/4 to produce a carotenoid-derived branch-inhibiting hormone. Dev Cell 8: 443–449. doi: 10.1016/j.devcel.2005.01.009
[31]  Sorefan K, Booker J, Haurogne K, Goussot M, Bainbridge K, et al. (2003) MAX4 and RMS1 are orthologous dioxygenase-like genes that regulate shoot branching in Arabidopsis and pea. Genes Dev 17: 1469–1474. doi: 10.1101/gad.256603
[32]  Stirnberg P, van de Sande K, Leyser HMO (2002) MAX1 and MAX2 control shoot lateral branching in Arabidopsis. Development 129: 1131–1141.
[33]  Lin H, Wang RX, Qian Q, Yan MX, Meng XB, et al. (2009) DWARF27, an iron-containing protein required for the biosynthesis of strigolactones, regulates rice tiller bud outgrowth. Plant Cell 21: 1512–1525. doi: 10.1105/tpc.109.065987
[34]  Waters MT, Brewer PB, Bussell JD, Smith SM, Beveridge CA (2012) The Arabidopsis ortholog of rice DWARF27 acts upstream of MAX1 in the control of plant development by strigolactones. Plant Physiol 159: 1073–1085. doi: 10.1104/pp.112.196253
[35]  Kretzschmar T, Kohlen W, Sasse J, Borghi L, Schlegel M, et al. (2012) A petunia ABC protein controls strigolactone-dependent symbiotic signalling and branching. Nature 483: 341–344. doi: 10.1038/nature10873
[36]  Arite T, Umehara M, Ishikawa S, Hanada A, Maekawa M, et al. (2009) d14, a strigolactone-insensitive mutant of rice, shows an accelerated outgrowth of tillers. Plant Cell Physiol 50: 1416–1424. doi: 10.1093/pcp/pcp091
[37]  Gaiji N, Cardinale F, Prandi C, Bonfante P, Ranghino G (2012) The computational-based structure of Dwarf14 provides evidence for its role as potential strigolactone receptor in plants. BMC Res Notes 5: 307. doi: 10.1186/1756-0500-5-307
[38]  Waters MT, Nelson DC, Scaffidi A, Flematti GR, Sun YKM, et al. (2012) Specialisation within the DWARF14 protein family confers distinct responses to karrikins and strigolactones in Arabidopsis. Development 139: 1285–1295. doi: 10.1242/dev.074567
[39]  Hamiaux C, Drummond RSM, Janssen BJ, Ledger SE, Cooney JM, et al. (2012) DAD2 is an alpha/beta hydrolase likely to be involved in the perception of the plant branching hormone, strigolactone. Curr Biol 22: 2032–2036. doi: 10.1016/j.cub.2012.08.007
[40]  Nakamura H, Xue YL, Miyakawa T, Hou F, Qin HM, et al. (2013) Molecular mechanism of strigolactone perception by DWARF14. Nat Commun 4: 2613. doi: 10.1038/ncomms3613
[41]  Jiang L, Liu X, Xiong G, Liu H, Chen F, et al. (2013) DWARF 53 acts as a repressor of strigolactone signalling in rice. Nature 504: 401–405. doi: 10.1038/nature12870
[42]  Zhou F, Lin Q, Zhu L, Ren Y, Zhou K, et al. (2013) D14-SCF(D3)-dependent degradation of D53 regulates strigolactone signalling. Nature 504: 406–410. doi: 10.1038/nature12878
[43]  Wang Y, Sun S, Zhu W, Jia K, Yang H, et al. (2013) Strigolactone/MAX2-induced degradation of brassinosteroid transcriptional effector BES1 regulates shoot branching. Dev Cell 27: 681–688. doi: 10.1016/j.devcel.2013.11.010
[44]  Ward SP, Salmon J, Hanley SJ, Karp A, Leyser O (2013) Using Arabidopsis to study shoot branching in biomass willow. Plant Physiol 162: 800–811. doi: 10.1104/pp.113.218461
[45]  Salmon J, Ward SP, Hanley SJ, Leyser O, Karp A (2014) Functional screening of willow alleles in Arabidopsis combined with QTL mapping in willow (Salix) identifies SxMAX4 as a coppicing response gene. Plant Biotechnol J 12: 480–491. doi: 10.1111/pbi.12154
[46]  Tuskan GA, Difazio S, Jansson S, Bohlmann J, Grigoriev I, et al. (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313: 1596–1604. doi: 10.1126/science.1128691
[47]  Li Z, Czarnecki O, Chourey K, Yang J, Tuskan GA, et al. (2014) Strigolactone-regulated proteins revealed by iTRAQ-based quantitative proteomics in Arabidopsis. J Proteome Res 13: 1359–1372. doi: 10.1021/pr400925t
[48]  Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15: 473–497. doi: 10.1111/j.1399-3054.1962.tb08052.x
[49]  Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, et al. (2012) Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res 40: D1178–1186. doi: 10.1093/nar/gkr944
[50]  Nakagawa T, Suzuki T, Murata S, Nakamura S, Hino T, et al. (2007) Improved gateway binary vectors: High-performance vectors for creation of fusion constructs in Transgenic analysis of plants. Biosci, Biotechnol, Biochem 71: 2095–2100. doi: 10.1271/bbb.70216
[51]  Holsters M, Silva B, Van Vliet F, Genetello C, De Block M, et al. (1980) The functional organization of the nopaline A. tumefaciens plasmid pTiC58. Plasmid 3: 212–230. doi: 10.1016/0147-619x(80)90110-9
[52]  Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16: 735–743. doi: 10.1046/j.1365-313x.1998.00343.x
[53]  Arvidsson S, Kwasniewski M, Riano-Pachon DM, Mueller-Roeber B (2008) QuantPrime - a flexible tool for reliable high-throughput primer design for quantitative PCR. BMC Bioinformatics 9: 465. doi: 10.1186/1471-2105-9-465
[54]  Lamesch P, Berardini TZ, Li D, Swarbreck D, Wilks C, et al. (2012) The Arabidopsis Information Resource (TAIR): improved gene annotation and new tools. Nucleic Acids Res 40: D1202–1210. doi: 10.1093/nar/gkr1090
[55]  Benfey PN, Chua NH (1990) The cauliflower mosaic virus 35S promoter: Combinatorial regulation of transcription in plants. Science 250: 959–966. doi: 10.1126/science.250.4983.959
[56]  Ha CV, Leyva-Gonzalez MA, Osakabe Y, Tran UT, Nishiyama R, et al. (2014) Positive regulatory role of strigolactone in plant responses to drought and salt stress. Proc Natl Acad Sci U S A 111: 851–856. doi: 10.1073/pnas.1322135111

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133