Simulation studies that validate statistical techniques for fMRI data are challenging due to the complexity of the data. Therefore, it is not surprising that no common data generating process is available (i.e. several models can be found to model BOLD activation and noise). Based on a literature search, a database of simulation studies was compiled. The information in this database was analysed and critically evaluated focusing on the parameters in the simulation design, the adopted model to generate fMRI data, and on how the simulation studies are reported. Our literature analysis demonstrates that many fMRI simulation studies do not report a thorough experimental design and almost consistently ignore crucial knowledge on how fMRI data are acquired. Advice is provided on how the quality of fMRI simulation studies can be improved.
References
[1]
Kwong KK, Belliveau JW, Chesler DA, Goldberg IE, Weisskoff RM, et al. (1992) Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proceedings of the National Academy of Sciences of the United States of America 89: 5675–5679. doi: 10.1073/pnas.89.12.5675
[2]
Ogawa S, Tank DW, Menon R, Ellermann JM, Kim SG, et al. (1992) Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proceedings of the National Academy of Sciences of the United States of America 89: 5951–5955. doi: 10.1073/pnas.89.13.5951
[3]
Brosch JR, Talabave TM, Ulmer JL, Nyenhuis JA (2002) Simulation of human respiration in fMRI with a mechanical model. IEEE Transactions on Biomedical Engineering 49: 700–707. doi: 10.1109/tbme.2002.1010854
[4]
David O, Guillemain I, Saillet S, Reyt S, Deransart C, et al. (2008) Identifying neural drivers with functional MRI: An electrophysiological validation. PLoS Biology 6(12): e315. doi: 10.1371/journal.pbio.0060315
[5]
Bandettini P, editor 20 years of fMRI. NeuroImage 62: 575–1324. doi: 10.1016/j.neuroimage.2012.04.026
[6]
Handwerker DA, Gonzalez-Castillo J, D'Esposito M, Bandettini PA (2012) The continuing challenge of understanding and modeling hemodynamic variation in fMRI. NeuroImage 62: 1017–1023. doi: 10.1016/j.neuroimage.2012.02.015
[7]
Greve D, Brown G, Mueller B, Glover G, Liu T (2013) A survey of the sources of noise in fMRI. Psychometrika 78: 396–416. doi: 10.1007/s11336-012-9294-0
[8]
Bellec P, Perlbarg V, Evans AC (2009) Bootstrap generation and evaluation of an fMRI simulation database. Magnetic Resonance Imaging 27: 1382–1396. doi: 10.1016/j.mri.2009.05.034
[9]
Backfrieder W, Baumgartner R, Sámal M, Moser E, Bergmann H (1996) Quantification of intensity variations in functional MR images using rotated principal components. Physics in Medicine and Biology 41: 1425–1438. doi: 10.1088/0031-9155/41/8/011
[10]
Boynton GM, Engel SA, Glover GH, Heeger DJ (1996) Linear systems analysis of functional magnetic resonance imaging in human v1. The Journal of Neuroscience 16: 4207–4221.
[11]
Cohen MS (1997) Parametric analysis of fMRI data using linear systems methods. NeuroImage 6: 93–103. doi: 10.1006/nimg.1997.0278
[12]
Friston KJ, Fletcher P, Josephs O, Holmes A, Rugg MD, et al. (1998) Event-related fMRI: Characterizing differential responses. NeuroImage 7: 30–40. doi: 10.1006/nimg.1997.0306
[13]
Glover GH (1999) Deconvolution of impulse response in event-related BOLD fMRI. NeuroImage 9: 416–429. doi: 10.1006/nimg.1998.0419
[14]
Buxton RB, Wong EC, Frank LR (1998) Dynamics of blood ow and oxygenation changes during brain activation: The balloon model. Magnetic Resonance in Medicine 39: 855–864. doi: 10.1002/mrm.1910390602
[15]
Buxton RB, Ulud?g K, Dubowitz DJ, Liu TT (2004) Modeling the hemodynamic response to brain activation. NeuroImage 23: S220–S233. doi: 10.1016/j.neuroimage.2004.07.013
[16]
Lazar N (2008) The Statistical Analysis of Functional MRI Data. Berlin, Germany: Springer Verlag.
[17]
Park J, Shedden K, Polk TA (2012) Correlation and heritability in neuroimaging datasets: a spatial decomposition approach with application to an fMRI study of twins. NeuroImage 59: 1132–1142. doi: 10.1016/j.neuroimage.2011.06.066
[18]
Penny WD (2011) Comparing Dynamic Causal Models using AIC, BIC and Free Energy. NeuroImage 59: 319–330. doi: 10.1016/j.neuroimage.2011.07.039
[19]
Sturzbecher MJ, Tedeschi W, Cabella BCT, Baffa O, Neves UPC, et al. (2009) Non-extensive entropy and the extraction of BOLD spatial information in event-related functional MRI. Physics in Medicine and Biology 54: 161–174. doi: 10.1088/0031-9155/54/1/011
[20]
Skrondal A (2000) Design and analysis of Monte Carlo experiments: Attacking the conventional wisdom. Multivariate Behavioral Research 35: 137–167. doi: 10.1207/s15327906mbr3502_1
[21]
Johnston LA, Duff E, Mareels I, Egan GF (2008) Nonlinear estimation of the BOLD signal. NeuroImage 40: 504–514. doi: 10.1016/j.neuroimage.2007.11.024
[22]
Fadili MJ, Ruan S, Bloyet D, Mazoyer B (2001) On the number of clusters and the fuzziness index for unsupervised FCA application to BOLD fMRI time series. Medical Image Analysis 5: 55–67. doi: 10.1016/s1361-8415(00)00035-9
[23]
Schippers MB, Renken R, Keysers C (2011) The effect of intra- and inter-subject variability of hemodynamic responses on group level Granger causality analyses. NeuroImage 57: 22–36. doi: 10.1016/j.neuroimage.2011.02.008
[24]
Welvaert M, Durnez J, Moerkerke B, Verdoolaege G, Rosseel Y (2011) neuRosim: An R package for generating fMRI data. Journal of Statistical Software 44: 1–18.
[25]
Erhardt EB, Allen EA, Wei Y, Eichele T, Calhoun VD (2012) SimTB, a simulation toolbox for fMRI data under a model of spatiotemporal separability. NeuroImage 59: 4160–4167. doi: 10.1016/j.neuroimage.2011.11.088