[1] | Sun W, Van Montagu M, Verbruggen N (2002) Small heat shock proteins and stress tolerance in plants. BBA - Gene StructExpr 1577: 1–9. doi: 10.1016/s0167-4781(02)00417-7
|
[2] | Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: An overview. Environ Exp Bot 61: 199–223. doi: 10.1016/j.envexpbot.2007.05.011
|
[3] | Kotak S, Larkindale J, Lee U, von Koskull-Doring P, Vierling E, et al. (2007) Complexity of the heat stress response in plants. Curr Opin Plant Biol 10: 310–316. doi: 10.1016/j.pbi.2007.04.011
|
[4] | Schulze E-D, Beck E, Muller-Hohenstein K (2005) Plant ecology. Berlin: Springer.
|
[5] | Bharti K, Nover L (2002) Heat stress-induced signalling. In: Scheel D, Wasternack C, Plant signal transduction: Frontiers in molecular biology. Oxford: Oxford University Press. pp. 74–115.
|
[6] | Vierling E (1991) The Roles of Heat-Shock Proteins in Plants. Annu Rev Plant Phys 42: 579–620. doi: 10.1146/annurev.pp.42.060191.003051
|
[7] | Hong SW, Vierling E (2001) Hsp101 is necessary for heat tolerance but dispensable for development and germination in the absence of stress. Plant J 27: 25–35. doi: 10.1046/j.1365-313x.2001.01066.x
|
[8] | Nieto-Sotelo J, Martinez LM, Ponce G, Cassab GI, Alagon A, et al. (2002) Maize HSP101 Plays Important Roles in Both Induced and Basal Thermotolerance and Primary Root Growth. Plant Cell 14: 1621–1633. doi: 10.1105/tpc.010487
|
[9] | Ludwig-Muller J, Krishna P, Forreiter C (2000) A Glucosinolate Mutant of Arabidopsis Is Thermosensitive and Defective in Cytosolic Hsp90 Expression after Heat Stress. Plant Physiol 123: 949–958. doi: 10.1104/pp.123.3.949
|
[10] | Cho E, Choi Y (2009) A nuclear-localized HSP70 confers thermoprotective activity and drought-stress tolerance on plants. Biotechnol Lett31: 597–606. doi: 10.1007/s10529-008-9880-5
|
[11] | Heckathorn SA, Downs CA, Sharkey TD, Coleman JS (1998) The Small, Methionine-Rich Chloroplast Heat-Shock Protein Protects Photosystem II Electron Transport during Heat Stress. Plant Physiol 116: 439–444. doi: 10.1104/pp.116.1.439
|
[12] | Wang D, Luthe DS, Krans JV, Park SY (2000) The presence and role of heat shock proteins in creeping bentgrass. In: Wilkinson RE, Plant–Environment Interactions, 2nd ed. New York: Marcel Dekker. pp. 283–319.
|
[13] | Xu Y, Zhan C, Huang B (2011) Heat Shock Proteins in Association with Heat Tolerance in Grasses. Int J Proteomics 2011. doi: 10.1155/2011/529648
|
[14] | He Y, Huang B (2007) Protein changes during heat stress in three Kentucky bluegrass cultivars differing in heat tolerance. Crop Sci 47: 2513–2520. doi: 10.2135/cropsci2006.12.0821
|
[15] | Park SY, Shivaji R, Krans JV, Luthe DS (1996) Heat-shock response in heat-tolerant and nontolerant variants of Agrostis palustris Huds. Plant Physiol 111: 515–524.
|
[16] | Wang DF, Luthe DS (2003) Heat sensitivity in a bentgrass variant. Failure to accumulate a chloroplast heat shock protein isoform implicated in heat tolerance. Plant Physiol 133: 319–327. doi: 10.1104/pp.102.018309
|
[17] | Xu Y, Gianfagna T, Huang B (2010) Proteomic changes associated with expression of a gene (ipt) controlling cytokinin synthesis for improving heat tolerance in a perennial grass species. Environ Exp Bot 61: 3273–3289. doi: 10.1093/jxb/erq149
|
[18] | Heckathorn SA, Poeller GJ, Coleman JS, Hallberg RL (1996) Nitrogen availability alters patterns of accumulation of heat stress-induced proteins in plants. Oecologia 105: 413–418. doi: 10.1007/bf00328745
|
[19] | Liu H, Baldwin CM, Luo H, Pessarakli M (2007) Enhancing Turfgrass Nitrogen Use under Stresses. In: Pessarakli M, Handbook of Turfgrass Management and Physiology. New York: Taylor and Francis. pp. 555–599.
|
[20] | Tawfik AA, Kleinhenz MD, Palta JP (1996) Application of calcium and nitrogen for mitigating heat stress effects on potatoes. Am Potato J 73: 261–273. doi: 10.1007/bf02849276
|
[21] | Wang D, Heckathorn SA, Mainali K, Hamilton EW (2008) Effects of N on plant response to heat-wave: a field study with prairie vegetation. J Integr Plant Biol 50: 1416–1425. doi: 10.1111/j.1744-7909.2008.00748.x
|
[22] | Fu JM, Huang BR (2003) Effects of foliar application of nutrients on heat tolerance of creeping bentgrass. J Plant Nutrition 26: 81–96. doi: 10.1081/pln-120016498
|
[23] | Zhao W, Xu S, Li J, Cui L, Chen Y, et al. (2008) Effects of foliar application of nitrogen on the photosynthetic performance and growth of two fescue cultivars under heat stress. Biol Plantarum 52: 113–116. doi: 10.1007/s10535-008-0021-8
|
[24] | Beard JB (2002) Turf Management for Golf Courses. Chelsea, MI: Ann Arbor Press.
|
[25] | Duble RL (2001) Turfgrasses: Their Management and Use in the Southern Zone. College Station, TX: Texas A&M University Press.
|
[26] | Wang K, Zhang X, Ervin E (2013) Effects of Nitrate and Cytokinin on Creeping Bentgrass under Supraoptimal Temperatures. J Plant Nutrit 36: 1549–1564. doi: 10.1080/01904167.2013.799184
|
[27] | Blum A, Ebercon A (1981) Cell Membrane Stability as a Measure of Drought and Heat Tolerance in Wheat. Crop Sci 21: 43–47. doi: 10.2135/cropsci1981.0011183x002100010013x
|
[28] | Wang KH, Jiang YW (2007) Waterlogging tolerance of Kentucky bluegrass cultivars. Hortscience 42: 386–390.
|
[29] | Zhang XZ, Ervin EH (2008) Impact of Seaweed Extract-Based Cytokinins and Zeatin Riboside on Creeping Bentgrass Heat Tolerance. Crop Sci 48: 364–370. doi: 10.2135/cropsci2007.05.0262
|
[30] | Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685. doi: 10.1038/227680a0
|
[31] | Takahashi A, Casais C, Ichimura K, Shirasu K (2003) HSP90 interacts with RAR1 and SGT1 and is essential for RPS2-mediated disease resistance in Arabidopsis. P Natl Acad Sci USA 100: 11777–11782. doi: 10.1073/pnas.2033934100
|
[32] | Liu XH, Huang BR (2002) Cytokinin effects on creeping bentgrass response to heat stress: II. Leaf senescence and antioxidant metabolism. Crop Sci 42: 466–472. doi: 10.2135/cropsci2002.0466
|
[33] | Pote J, Wang ZL, Huang BR (2006) Timing and temperature of physiological decline for creeping bentgrass. J Am Soc Hortic Sci 131: 608–615.
|
[34] | Xu Y, Huang BR (2009) Effects of foliar-applied ethylene inhibitor and synthetic cytokinin on creeping bentgrass to enhance heat tolerance. Crop Sci. 49: 1876–1884. doi: 10.2135/cropsci2008.07.0441
|
[35] | Rachmilevitch S, Xu Y, Gonzalez-Meler MA, Huang BR, Lambers H (2007) Cytochrome and alternative pathway activity in roots of thermal and non-thermal Agrostis species in response to high soil temperature. Physiol Plant 129: 163–174. doi: 10.1111/j.1399-3054.2006.00784.x
|
[36] | Pellett HM, Roberts EC (1963) Effects of Mineral Nutrition on High Temperature Induced Growth Retardation on Kentucky Bluegrass. Agron J 55: 473–476. doi: 10.2134/agronj1963.00021962005500050019x
|
[37] | Carrow RN, Waddington DV, Rieke PE (2001) Turfgrass soil fertility and chemical problem: assessment and management. Chelsea, MI: Wiley.
|
[38] | Fry JD, Huang B (2004) Applied turfgrass science and physiology. Hoboken, NJ: John Wiley and Sons.
|
[39] | Totten FW, McCarty LB, Liu H (2007) Optimal rates of nitrogen fertilization for creeping bentgrass. Golf Course Manag 75: 110–114.
|
[40] | B?sl B, Grimminger V, Walter S (2006) The molecular chaperone Hsp104–A molecular machine for protein disaggregation. J Struct Biol 156: 139–148. doi: 10.1016/j.jsb.2006.02.004
|
[41] | Glover JR, Lindquist S (1998) Hsp104, Hsp70, and Hsp40: A Novel Chaperone System that Rescues Previously Aggregated Proteins. Cell 94: 73–82. doi: 10.1016/s0092-8674(00)81223-4
|
[42] | Goloubinoff P, Mogk A, Zvi APB, Tomoyasu T, Bukau B (1999) Sequential mechanism of solubilization and refolding of stable protein aggregates by a bichaperone network. P Natl Acad Sci USA 96: 13732–13737. doi: 10.1073/pnas.96.24.13732
|
[43] | Agarwal M, Sahi C, Katiyar-Agarwal S, Agarwal S, Young T, et al. (2003) Molecular characterization of rice hsp101: complementation of yeast hsp104 mutation by disaggregation of protein granules and differential expression in indica and japonica rice types. Plant Mol Biol 51: 543–553.
|
[44] | Batra G, Chauhan VS, Singh A, Arid NKS, Grover A (2007) Complexity of rice Hsp100 gene family: lessons from rice genome sequence data. J Biosci 32: 611–619. doi: 10.1007/s12038-007-0060-x
|
[45] | Campbell JL, Klueva NY, Zheng H-g, Nieto-Sotelo J, Ho THD, et al. (2001) Cloning of new members of heat shock protein HSP101 gene family in wheat (Triticum aestivum (L.) Moench) inducible by heat, dehydration, and ABA. BBA - Gene Struct Expr 1517: 270–277. doi: 10.1016/s0167-4781(00)00292-x
|
[46] | Young TE, Ling J, Geisler-Lee CJ, Tanguay RL, Caldwell C, et al. (2001) Developmental and thermal regulation of the maize heat shock protein, HSP101. Plant Physiol 127: 777–791. doi: 10.1104/pp.010160
|
[47] | Al-Niemi TS, Stout RG (2002) Heat-shock protein expression in a perennial grass commonly associated with active geothermal areas in western North America. J Therm Biol 27: 547–553. doi: 10.1016/s0306-4565(02)00029-3
|
[48] | Krishna P, Gloor G (2001) The Hsp90 family of proteins in Arabidopsis thaliana. Cell Stress Chaperon 6: 238–246. doi: 10.1379/1466-1268(2001)006<0238:thfopi>2.0.co;2
|
[49] | Wang WX, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9: 244–252. doi: 10.1016/j.tplants.2004.03.006
|
[50] | Rutherford SL, Lindquist S (1998) Hsp90 as a capacitor for morphological evolution. Nature 396: 336–342. doi: 10.1038/24550
|
[51] | McLellan CA, Turbyville TJ, Wijeratne EMK, Kerschen A, Vierling E, et al. (2007) A Rhizosphere Fungus Enhances Arabidopsis Thermotolerance through Production of an HSP90 Inhibitor. Plant Physiol 145: 174–182. doi: 10.1104/pp.107.101808
|
[52] | Queitsch C, Sangster TA, Lindquist S (2002) Hsp90 as a capacitor of phenotypic variation. Nature 417: 618–624. doi: 10.1038/nature749
|
[53] | Frydman J (2001) Folding of Newly Translated Proteins In Vivo: The Role of Molecular Chaperones. Annu Rev Biochem 70: 603–647. doi: 10.1146/annurev.biochem.70.1.603
|
[54] | Hartl FU (1996) Molecular chaperones in cellular protein folding. Nature 381: 571–580. doi: 10.1038/381571a0
|
[55] | Karlin S, Brocchieri L (1998) Heat Shock Protein 70 Family: Multiple Sequence Comparisons, Function, and Evolution. J Mol Evol 47: 565–577. doi: 10.1007/pl00006413
|
[56] | Deloche O, Kelley W, Georgopoulos C (1997) Structure-function analyses of the Ssc1p, Mdj1p, and Mge1p Saccharomyces cerevisiae mitochondrial proteins in Escherichia coli. J Bacteriol 179: 6066–6075.
|
[57] | Lee J, Sch?ffl F (1996) AnHsp70 antisense gene affects the expression of HSP70/HSC70, the regulation of HSF, and the acquisition of thermotolerance in transgenicArabidopsis thaliana. Mol Gen Genet 252: 11–19. doi: 10.1007/bf02173200
|
[58] | Sung DY, Guy CL (2003) Physiological and Molecular Assessment of Altered Expression of Hsc70-1 in Arabidopsis. Evidence for Pleiotropic Consequences. Plant Physiol 132: 979–987. doi: 10.1104/pp.102.019398
|
[59] | Xu C, Huang B (2008) Root proteomic responses to heat stress in two Agrostis grass species contrasting in heat tolerance. J Exp Bot 59: 4183–4194. doi: 10.1093/jxb/ern258
|
[60] | Leone A, Perrotta C, Maresca B (2003) Plant tolerance to heat stress: current strategies and new emergent insights. In: Di Toppi LS, Pawlik-Skowrońska B, Abiotic stresses in plants. Dordrecht: Kluwer Academic Publishers. pp. 1–22.
|
[61] | Zhang Y, Mian MAR, Chekhovskiy K, So S, Kupfer D, et al. (2005) Differential gene expression in Festuca under heat stress conditions. J Exp Bot 56: 897–907. doi: 10.1093/jxb/eri082
|
[62] | Harndahl U, Hall RB, Osteryoung KW, Vierling E, Bornman JF, et al. (1999) The chloroplast small heat shock protein undergoes oxidation-dependent conformational changes and may protect plants from oxidative stress. Cell Stress Chaperon 4: 129–138. doi: 10.1379/1466-1268(1999)004<0129:tcshsp>2.3.co;2
|
[63] | Malik MK, Slovin JP, Hwang CH, Zimmerman JL (1999) Modified expression of a carrot small heat shock protein gene, Hsp17.7, results in increased or decreased thermotolerance. Plant J 20: 89–99. doi: 10.1046/j.1365-313x.1999.00581.x
|
[64] | Huang B, Xu C (2008) Identification and Characterization of Proteins Associated with Plant Tolerance to Heat Stress. J Integr Plant Biol 50: 1230–1237. doi: 10.1111/j.1744-7909.2008.00735.x
|
[65] | Friedrich KL, Giese KC, Buan NR, Vierling E (2004) Interactions between small heat shock protein subunits and substrate in small heat shock protein-substrate complexes. J Biol Chem 279: 1080–1089. doi: 10.1074/jbc.m311104200
|
[66] | Pessarakli M (2002) Handbook of plant and crop physiology. New York: M. Dekker.
|
[67] | Crevel G, Bates H, Huikeshoven H, Cotterill S (2001) The Drosophila Dpit47 protein is a nuclear Hsp90 co-chaperone that interacts with DNA polymerase {alpha}. J Cell Sci 114: 2015–2025.
|
[68] | Derocher AE, Helm KW, Lauzon LM, Vierling E (1991) Expression of a conserved family of cytoplasmic low-molecular-weight heat-shock proteins during heat-stress and recovery. Plant Physiol 96: 1038–1047. doi: 10.1104/pp.96.4.1038
|
[69] | Hsieh MH, Chen JT, Jinn TL, Chen YM, Lin CY (1992) A class of soybean low-molecular-weight heat-shock proteins - immunological study and quantitation. Plant Physiol 99: 1279–1284. doi: 10.1104/pp.99.4.1279
|
[70] | Ackerly DD, Dudley SA, Sultan SE, Schmitt J, Coleman JS, et al. (2000) The Evolution of Plant Ecophysiological Traits: Recent Advances and Future Directions. BioScience 50: 979–995. doi: 10.1641/0006-3568(2000)050[0979:teopet]2.0.co;2
|
[71] | Medici LO, Azevedo RA, Smith RJ, Lea PJ (2004) The influence of nitrogen supply on antioxidant enzymes in plant roots. Funct Plant Biol 31: 1–9. doi: 10.1071/fp03130
|
[72] | Wang K, Zhang X, Ervin E (2012) Antioxidative responses in roots and shoots of creeping bentgrass under high temperature: Effects of nitrogen and cytokinin. J Plant Physiol 169: 492–500. doi: 10.1016/j.jplph.2011.12.007
|