全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Separating Fusion from Rivalry

DOI: 10.1371/journal.pone.0103037

Full-Text   Cite this paper   Add to My Lib

Abstract:

Visual fusion is the process in which differing but compatible binocular information is transformed into a unified percept. Even though this is at the basis of binocular vision, the underlying neural processes are, as yet, poorly understood. In our study we therefore aimed to investigate neural correlates of visual fusion. To this end, we presented binocularly compatible, fusible (BF), and incompatible, rivaling (BR) stimuli, as well as an intermediate stimulus type containing both binocularly fusible and monocular, incompatible elements (BFR). Comparing BFR stimuli with BF and BR stimuli, respectively, we were able to disentangle brain responses associated with either visual fusion or rivalry. By means of functional magnetic resonance imaging, we measured brain responses to these stimulus classes in the visual cortex, and investigated them in detail at various retinal eccentricities. Compared with BF stimuli, the response to BFR stimuli was elevated in visual cortical areas V1 and V2, but not in V3 and V4 – implying that the response to monocular stimulus features decreased from V1 to V4. Compared to BR stimuli, the response to BFR stimuli decreased with increasing eccentricity, specifically within V3 and V4. Taken together, it seems that although the processing of exclusively monocular information decreases from V1 to V4, the processing of binocularly fused information increases from earlier to later visual areas. Our findings suggest the presence of an inhibitory neural mechanism which, depending on the presence of fusion, acts differently on the processing of monocular information.

References

[1]  Blake R, Logothetis NK (2002) Visual competition. Nat Rev Neurosci 3: 13–21 doi:10.1038/nrn701.
[2]  Tong F, Meng M, Blake R (2006) Neural bases of binocular rivalry. Trends Cogn Sci (Regul Ed) 10: 502–511 doi:10.1016/j.tics.2006.09.003.
[3]  Breese BB (1899) On inhibition. The Psychological Review: Monograph Supplements 3: 1–65 doi:10.1037/h0092990.
[4]  Haynes J-D, Deichmann R, Rees G (2005) Eye-specific effects of binocular rivalry in the human lateral geniculate nucleus. Nature 438: 496–499 doi:10.1038/nature04169.
[5]  Wunderlich K, Schneider KA, Kastner S (2005) Neural correlates of binocular rivalry in the human lateral geniculate nucleus. Nat Neurosci 8: 1595–1602 doi:10.1038/nn1554.
[6]  Leopold DA, Logothetis NK (1996) Activity changes in early visual cortex reflect monkeys’ percepts during binocular rivalry. Nature 379: 549–553 doi:10.1038/379549a0.
[7]  Logothetis NK, Leopold DA, Sheinberg DL (1996) What is rivalling during binocular rivalry? Nature 380: 621–624 doi:10.1038/380621a0.
[8]  Ooi TL, He ZJ (2003) A distributed intercortical processing of binocular rivalry: psychophysical evidence. Perception 32: 155–166. doi: 10.1068/p3467
[9]  Polonsky A, Blake R, Braun J, Heeger DJ (2000) Neuronal activity in human primary visual cortex correlates with perception during binocular rivalry. Nat Neurosci 3: 1153–1159 doi:10.1038/80676.
[10]  Lee S-H, Blake R (2002) V1 activity is reduced during binocular rivalry. J Vis 2: 618–626 doi:10:1167/2.9.4.
[11]  Moradi F, Heeger DJ (2009) Inter-ocular contrast normalization in human visual cortex. J Vis 9: 13.1–22 doi:10.1167/9.3.13.
[12]  Creed RS (1935) Observations on binocular fusion and rivalry. J Physiol (Lond) 84: 381–392.
[13]  Julesz B, Tyler CW (1976) Neurontropy, an entropy-like measure of neural correlation, in binocular fusion and rivalry. Biol Cybern 23: 25–32. doi: 10.1007/bf00344148
[14]  Apkarian PA, Nakayama K, Tyler CW (1981) Binocularity in the human visual evoked potential: facilitation, summation and suppression. Electroencephalogr Clin Neurophysiol 51: 32–48. doi: 10.1016/0013-4694(81)91507-8
[15]  Roeber U, Veser S, Schr?ger E, O’Shea RP (2011) On the role of attention in binocular rivalry: electrophysiological evidence. PLoS ONE 6: e22612 doi:10.1371/journal.pone.0022612.
[16]  Roeber U (2012) Neural processing of orientation differences between the eyes’ images. J Vis 12: 20 doi:10.1167/12.13.20.
[17]  Breese BB (1909) Binocular rivalry. The Psychological Review 16: 410–415. doi: 10.1037/h0075805
[18]  Blake R, O’Shea RP, Mueller TJ (1992) Spatial zones of binocular rivalry in central and peripheral vision. Vis Neurosci 8: 469–478. doi: 10.1017/s0952523800004971
[19]  Ogle KN, Schwartz JT (1959) Depth of focus of the human eye. J Opt Soc Am 49: 273–280. doi: 10.1364/josa.49.000273
[20]  Strasburger H, Rentschler I, Jüttner M (2011) Peripheral vision and pattern recognition: a review. J Vis 11: 13 doi:10.1167/11.5.13.
[21]  Lyle TK, Foley J (1955) Subnormal binocular vision with special reference to peripheral fusion. Br J Ophthalmol 39: 474–487. doi: 10.1136/bjo.39.8.474
[22]  O’Shea RP, McDonald AA, Cumming A, Peart D, Sanderson G, et al. (1994) Interocular transfer of the movement aftereffect in central and peripheral vision of people with strabismus. Invest Ophthalmol Vis Sci 35: 313–317.
[23]  Yildirim C, Mutlu FM, Chen Y, Altinsoy HI (1999) Assessment of central and peripheral fusion and near and distance stereoacuity in intermittent exotropic patients before and after strabismus surgery. Am J Ophthalmol 128: 222–230. doi: 10.1016/s0002-9394(99)00079-3
[24]  DeYoe EA, Carman GJ, Bandettini P, Glickman S, Wieser J, et al. (1996) Mapping striate and extrastriate visual areas in human cerebral cortex. Proc Natl Acad Sci USA 93: 2382–2386. doi: 10.1073/pnas.93.6.2382
[25]  Engel SA, Rumelhart DE, Wandell BA, Lee AT, Glover GH, et al. (1994) fMRI of human visual cortex. Nature 369: 525 doi:10.1038/369525a0.
[26]  Engel SA, Glover GH, Wandell BA (1997) Retinotopic organization in human visual cortex and the spatial precision of functional MRI. Cereb Cortex 7: 181–192. doi: 10.1093/cercor/7.2.181
[27]  Blake R, Boothroyd K (1985) The precedence of binocular fusion over binocular rivalry. Percept Psychophys 37: 114–124. doi: 10.3758/bf03202845
[28]  Boynton GM, Demb JB, Glover GH, Heeger DJ (1999) Neuronal basis of contrast discrimination. Vision Res 39: 257–269. doi: 10.1016/s0042-6989(98)00113-8
[29]  Liu L, Tyler CW, Schor CM (1992) Failure of rivalry at low contrast: evidence of a suprathreshold binocular summation process. Vision Res 32: 1471–1479. doi: 10.1016/0042-6989(92)90203-u
[30]  Van Essen DC, Drury HA, Dickson J, Harwell J, Hanlon D, et al. (2001) An integrated software suite for surface-based analyses of cerebral cortex. J Am Med Inform Assoc 8: 443–459. doi: 10.1136/jamia.2001.0080443
[31]  Ashburner J, Friston KJ (2005) Unified segmentation. Neuroimage 26: 839–851 doi:10.1016/j.neuroimage.2005.02.018.
[32]  Schwartz EL (1980) Computational anatomy and functional architecture of striate cortex: a spatial mapping approach to perceptual coding. Vision Res 20: 645–669. doi: 10.1016/0042-6989(80)90090-5
[33]  Daniel PM, Whitteridge D (1961) The representation of the visual field on the cerebral cortex in monkeys. J Physiol (Lond) 159: 203–221.
[34]  Strasburger H (2003) Indirektes Sehen: Formerkennung im zentralen und peripheren Gesichtsfeld. G?ttingen: Hogrefe Verlag.
[35]  D’Souza DV, Auer T, Strasburger H, Frahm J, Lee BB (2011) Temporal frequency and chromatic processing in humans: an fMRI study of the cortical visual areas. J Vis 11. doi:10.1167/11.8.8.
[36]  Friston KJ, Büchel C (2007) Functional Connectivity: Eigenimages and multivariate analyses. Statistical Parametric Mapping. London: Academic Press. 492–507.
[37]  Friston KJ, Jezzard P, Frackowiak RS, Turner R (1993) Characterising focal and distributed physiological changes with MRI and PET. Functional MRI of the Brain. Berkeley: Society of Magnetic Resonance in Medicine. 207–216.
[38]  Van Essen DC (2005) A Population-Average, Landmark- and Surface-based (PALS) atlas of human cerebral cortex. Neuroimage 28: 635–662 doi:10.1016/j.neuroimage.2005.06.058.
[39]  Wilms M, Eickhoff SB, H?mke L, Rottschy C, Kujovic M, et al. (2010) Comparison of functional and cytoarchitectonic maps of human visual areas V1, V2, V3d, V3v, and V4(v). Neuroimage 49: 1171–1179 doi:10.1016/j.neuroimage.2009.09.063.
[40]  Wohlschl?ger AM, Specht K, Lie C, Mohlberg H, Wohlschl?ger A, et al. (2005) Linking retinotopic fMRI mapping and anatomical probability maps of human occipital areas V1 and V2. Neuroimage 26: 73–82 doi:10.1016/j.neuroimage.2005.01.021.
[41]  Heeger DJ, Huk AC, Geisler WS, Albrecht DG (2000) Spikes versus BOLD: what does neuroimaging tell us about neuronal activity? Nat Neurosci 3: 631–633 doi:10.1038/76572.
[42]  Poggio GF, Gonzalez F, Krause F (1988) Stereoscopic mechanisms in monkey visual cortex: binocular correlation and disparity selectivity. J Neurosci 8: 4531–4550.
[43]  Poggio GF (1995) Mechanisms of stereopsis in monkey visual cortex. Cereb Cortex 5: 193–204. doi: 10.1093/cercor/5.3.193
[44]  Joshua DE, Bishop PO (1970) Binocular single vision and depth discrimination. Receptive field disparities for central and peripheral vision and binocular interaction on peripheral single units in cat striate cortex. Exp Brain Res 10: 389–416. doi: 10.1007/bf02324766
[45]  Said CP, Heeger DJ (2013) A model of binocular rivalry and cross-orientation suppression. PLoS Comput Biol 9: e1002991 doi:10.1371/journal.pcbi.1002991.
[46]  Li Z, Atick JJ (1994) Efficient stereo coding in the multiscale representation. Network: Computation in Neural Systems 5: 157–174. doi: 10.1088/0954-898x/5/2/003
[47]  Katyal S, Ress D (2014) Endogenous attention signals evoked by threshold contrast detection in human superior colliculus. J Neurosci 34: 892–900 doi:10.1523/JNEUROSCI.3026-13.2014.
[48]  Katyal S, Zughni S, Greene C, Ress D (2010) Topography of covert visual attention in human superior colliculus. J Neurophysiol 104: 3074–3083 doi:10.1152/jn.00283.2010.
[49]  Carrasco M (2011) Visual attention: the past 25 years. Vision Res 51: 1484–1525 doi:10.1016/j.visres.2011.04.012.
[50]  Lee S-H, Blake R, Heeger DJ (2007) Hierarchy of cortical responses underlying binocular rivalry. Nat Neurosci 10: 1048–1054 doi:10.1038/nn1939.
[51]  Zhang P, Jamison K, Engel S, He B, He S (2011) Binocular rivalry requires visual attention. Neuron 71: 362–369 doi:10.1016/j.neuron.2011.05.035.
[52]  Nakayama K, Mackeben M (1989) Sustained and transient components of focal visual attention. Vision Res 29: 1631–1647. doi: 10.1016/0042-6989(89)90144-2

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133