全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Genes Involved in the Osteoarthritis Process Identified through Genome Wide Expression Analysis in Articular Cartilage; the RAAK Study

DOI: 10.1371/journal.pone.0103056

Full-Text   Cite this paper   Add to My Lib

Abstract:

Objective Identify gene expression profiles associated with OA processes in articular cartilage and determine pathways changing during the disease process. Methods Genome wide gene expression was determined in paired samples of OA affected and preserved cartilage of the same joint using microarray analysis for 33 patients of the RAAK study. Results were replicated in independent samples by RT-qPCR and immunohistochemistry. Profiles were analyzed with the online analysis tools DAVID and STRING to identify enrichment for specific pathways and protein-protein interactions. Results Among the 1717 genes that were significantly differently expressed between OA affected and preserved cartilage we found significant enrichment for genes involved in skeletal development (e.g. TNFRSF11B and FRZB). Also several inflammatory genes such as CD55, PTGES and TNFAIP6, previously identified in within-joint analyses as well as in analyses comparing preserved cartilage from OA affected joints versus healthy cartilage were among the top genes. Of note was the high up-regulation of NGF in OA cartilage. RT-qPCR confirmed differential expression for 18 out of 19 genes with expression changes of 2-fold or higher, and immunohistochemistry of selected genes showed a concordant change in protein expression. Most of these changes associated with OA severity (Mankin score) but were independent of joint-site or sex. Conclusion We provide further insights into the ongoing OA pathophysiological processes in cartilage, in particular into differences in macroscopically intact cartilage compared to OA affected cartilage, which seem relatively consistent and independent of sex or joint. We advocate that development of treatment could benefit by focusing on these similarities in gene expression changes and/or pathways.

References

[1]  Goldring MB, Marcu KB (2009) Cartilage homeostasis in health and rheumatic diseases. Arthritis Res Ther 11: 224. doi: 10.1186/ar2592
[2]  Loeser RF, Goldring SR, Scanzello CR, Goldring MB (2012) Osteoarthritis: a disease of the joint as an organ. Arthritis Rheum 64: 1697–1707. doi: 10.1002/art.34453
[3]  Bos SD, Slagboom PE, Meulenbelt I (2008) New insights into osteoarthritis: early developmental features of an ageing-related disease. Curr Opin Rheumatol 20: 553–559. doi: 10.1097/bor.0b013e32830aba48
[4]  Sandell LJ (2012) Etiology of osteoarthritis: genetics and synovial joint development. Nat Rev Rheumatol 8: 77–89. doi: 10.1038/nrrheum.2011.199
[5]  Gonzalez A (2013) Osteoarthritis year 2013 in review: genetics and genomics. Osteoarthritis Cartilage 21: 1443–1451. doi: 10.1016/j.joca.2013.07.001
[6]  Aigner T, Fundel K, Saas J, Gebhard PM, Haag J, et al. (2006) Large-scale gene expression profiling reveals major pathogenetic pathways of cartilage degeneration in osteoarthritis. Arthritis Rheum 54: 3533–3544. doi: 10.1002/art.22174
[7]  Xu Y, Barter MJ, Swan DC, Rankin KS, Rowan AD, et al. (2012) Identification of the pathogenic pathways in osteoarthritic hip cartilage: commonality and discord between hip and knee OA. Osteoarthritis Cartilage 20: 1029–1038. doi: 10.1016/j.joca.2012.05.006
[8]  Karlsson C, Dehne T, Lindahl A, Brittberg M, Pruss A, et al. (2010) Genome-wide expression profiling reveals new candidate genes associated with osteoarthritis. Osteoarthritis Cartilage 18: 581–592. doi: 10.1016/j.joca.2009.12.002
[9]  Geyer M, Grassel S, Straub RH, Schett G, Dinser R, et al. (2009) Differential transcriptome analysis of intraarticular lesional vs intact cartilage reveals new candidate genes in osteoarthritis pathophysiology. Osteoarthritis Cartilage 17: 328–335. doi: 10.1016/j.joca.2008.07.010
[10]  Tsuritani K, Takeda J, Sakagami J, Ishii A, Eriksson T, et al. (2010) Cytokine receptor-like factor 1 is highly expressed in damaged human knee osteoarthritic cartilage and involved in osteoarthritis downstream of TGF-beta. Calcif Tissue Int 86: 47–57. doi: 10.1007/s00223-009-9311-1
[11]  Sato T, Konomi K, Yamasaki S, Aratani S, Tsuchimochi K, et al. (2006) Comparative analysis of gene expression profiles in intact and damaged regions of human osteoarthritic cartilage. Arthritis Rheum 54: 808–817. doi: 10.1002/art.21638
[12]  Goeman JJ, van de Geer SA, de KF, van Houwelingen HC (2004) A global test for groups of genes: testing association with a clinical outcome. Bioinformatics 20: 93–99. doi: 10.1093/bioinformatics/btg382
[13]  Edgar R, Domrachev M, Lash AE (2002) Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 30: 207–210. doi: 10.1093/nar/30.1.207
[14]  Citri A, Pang ZP, Sudhof TC, Wernig M, Malenka RC (2012) Comprehensive qPCR profiling of gene expression in single neuronal cells. Nat Protoc 7: 118–127. doi: 10.1038/nprot.2011.430
[15]  Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25: 402–408. doi: 10.1006/meth.2001.1262
[16]  Bos SD, Bovee JV, Duijnisveld BJ, Raine EV, van Dalen WJ, et al. (2012) Increased type II deiodinase protein in OA-affected cartilage and allelic imbalance of OA risk polymorphism rs225014 at DIO2 in human OA joint tissues. Ann Rheum Dis 71: 1254–1258. doi: 10.1136/annrheumdis-2011-200981
[17]  Mankin HJ, Dorfman H, Lippiello L, Zarins A (1971) Biochemical and metabolic abnormalities in articular cartilage from osteo-arthritic human hips. II. Correlation of morphology with biochemical and metabolic data. J Bone Joint Surg Am 53: 523–537. doi: 10.1007/978-1-4471-5451-8_97
[18]  Huang DW, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4: 44–57. doi: 10.1038/nprot.2008.211
[19]  Szklarczyk D, Franceschini A, Kuhn M, Simonovic M, Roth A, et al. (2011) The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res 39: D561–D568. doi: 10.1093/nar/gkq973
[20]  Castano Betancourt MC, Cailotto F, Kerkhof HJ, Cornelis FM, Doherty SA, et al. (2012) Genome-wide association and functional studies identify the DOT1L gene to be involved in cartilage thickness and hip osteoarthritis. Proc Natl Acad Sci U S A 109: 8218–8223. doi: 10.1073/pnas.1119899109
[21]  Chapman K, Takahashi A, Meulenbelt I, Watson C, Rodriguez-Lopez J, et al. (2008) A meta-analysis of European and Asian cohorts reveals a global role of a functional SNP in the 5′ UTR of GDF5 with osteoarthritis susceptibility. Hum Mol Genet 17: 1497–1504. doi: 10.1093/hmg/ddn038
[22]  Day-Williams AG, Southam L, Panoutsopoulou K, Rayner NW, Esko T, et al. (2011) A Variant in MCF2L Is Associated with Osteoarthritis. Am J Hum Genet 89: 446–450. doi: 10.1016/j.ajhg.2011.08.001
[23]  Evangelou E, Kerkhof HJ, Styrkarsdottir U, Ntzani EE, Bos SD, et al.. (2013) A meta-analysis of genome-wide association studies identifies novel variants associated with osteoarthritis of the hip. Ann Rheum Dis, doi: 10.1136/annrheumdis-2012–203114.
[24]  Kerkhof HJ, Lories RJ, Meulenbelt I, Jonsdottir I, Valdes AM, et al. (2010) A genome-wide association study identifies an osteoarthritis susceptibility locus on chromosome 7q22. Arthritis Rheum 62: 499–510. doi: 10.1016/s1063-4584(09)60392-7
[25]  Miyamoto Y, Shi D, Nakajima M, Ozaki K, Sudo A, et al. (2008) Common variants in DVWA on chromosome 3p24.3 are associated with susceptibility to knee osteoarthritis. Nat Genet 40: 994–998. doi: 10.1038/ng.176
[26]  Nakajima M, Takahashi A, Kou I, Rodriguez-Fontenla C, Gomez-Reino JJ, et al. (2010) New sequence variants in HLA class II/III region associated with susceptibility to knee osteoarthritis identified by genome-wide association study. PLoS One 5: e9723. doi: 10.1371/journal.pone.0009723
[27]  Panoutsopoulou K, Southam L, Elliott KS, Wrayner N, Zhai G, et al. (2011) Insights into the genetic architecture of osteoarthritis from stage 1 of the arcOGEN study. Ann Rheum Dis 70: 864–867. doi: 10.1136/ard.2010.141473
[28]  Zeggini E, Panoutsopoulou K, Southam L, Rayner NW, Day-Williams AG, et al. (2012) Identification of new susceptibility loci for osteoarthritis (arcOGEN): a genome-wide association study. Lancet 380: 815–823. doi: 10.1016/s0140-6736(12)60681-3
[29]  Rodriguez-Fontenla C, Calaza M, Evangelou E, Valdes AM, Arden N, et al. (2013) Assessment of osteoarthritis candidate genes in a meta-analysis of 9 genome-wide association studies. Arthritis Rheum 66: 940–949. doi: 10.1002/art.38300
[30]  Ramos YF, Bos SD, van der Breggen R, Kloppenburg M, Ye K, et al.. (2014) A gain of function mutation in TNFRSF11B encoding osteoprotegerin causes osteoarthritis with chondrocalcinosis. Ann Rheum Dis, doi: 10.1136/annrheumdis-2013–205149.
[31]  Barter MJ, Young DA (2013) Epigenetic mechanisms and non-coding RNAs in osteoarthritis. Curr Rheumatol Rep 15: 353. doi: 10.1007/s11926-013-0353-z
[32]  Rushton MD, Reynard LN, Barter MJ, Refaie R, Rankin KS, et al.. (2014) Characterization of the cartilage DNA methylome in knee and hip osteoarthritis. Arthritis Rheumatol, doi: 10.1002/art.38713.
[33]  Styrkarsdottir U, Thorleifsson G, Helgadottir HT, Bomer N, Metrustry S, et al. (2014) Severe osteoarthritis of the hand associates with common variants within the ALDH1A2 gene and with rare variants at 1p31. Nat Genet 46: 498–502. doi: 10.1038/ng.2957
[34]  Chou CH, Wu CC, Song IW, Chuang HP, Lu LS, et al. (2013) Genome-wide expression profiles of subchondral bone in osteoarthritis. Arthritis Res Ther 15: R190 doi: 10.1186/ar4380.
[35]  Raine EV, Wreglesworth N, Dodd AW, Reynard LN, Loughlin J (2012) Gene expression analysis reveals HBP1 as a key target for the osteoarthritis susceptibility locus that maps to chromosome 7q22. Ann Rheum Dis 71: 2020–2027. doi: 10.1136/annrheumdis-2012-201304
[36]  Yamauchi J, Chan JR, Miyamoto Y, Tsujimoto G, Shooter EM (2005) The neurotrophin-3 receptor TrkC directly phosphorylates and activates the nucleotide exchange factor Dbs to enhance Schwann cell migration. Proc Natl Acad Sci U S A 102: 5198–5203. doi: 10.1073/pnas.0501160102
[37]  Seidel MF, Lane NE (2012) Control of arthritis pain with anti-nerve-growth factor: risk and benefit. Curr Rheumatol Rep 14: 583–588. doi: 10.1007/s11926-012-0289-8

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133