[1] | Rouwet D, Tassi F, Mora-Amador R, Sandri L, Chiarini V (2014) Past, present and future of volcanic lake monitoring. J Volcanol Geotherm Res 272: 78–97. doi: 10.1016/j.jvolgeores.2013.12.009
|
[2] | Brown G, Rymer H, Dowden J, Kapadia P, Stevenson D, et al. (1989) Energy budget analysis for Poás crater lake: implications for predicting volcanic activity. Nature 339: 370–373. doi: 10.1038/339370a0
|
[3] | Brantley SL, Agustsdottir AM, Rowe GL (1993) Crater lakes reveal volcanic heat and volatile fluxes. Geol Soc Am 3: 175–178.
|
[4] | Pasternack GB, Varekamp JC (1997) Volcanic lake systematics I. Physical constraints. Bull Volcanol 58(7): 528–538 doi:10.1007/s004450050160.
|
[5] | Anzidei M, Carapezza ML, Esposito A, Giordano G, Lelli M, et al. (2008) The Albano Maar Lake high resolution bathymetry and dissolved CO2 budget (Colli Albani volcano, Italy): constrains to hazard evaluation. J Volcanol Geotherm Res 171: 258–268. doi: 10.1016/j.jvolgeores.2007.11.024
|
[6] | Hurst T, Christenson B, Cole-Baker J (2012) Use of a weather buoy to derive improved heat and mass balance parameters for Ruapehu Crater Lake. J Volcanol Geotherm Res 235: 23–28. doi: 10.1016/j.jvolgeores.2012.05.004
|
[7] | Rouwet D, Tassi F (2011) Geochemical monitoring of volcanic lakes. A generalized box model for active crater lakes. Ann Geophys 54: 161–173 doi: 10.4401/ag-5035.
|
[8] | Kling GW, Clark MA, Compton HR, Devine JD, Evans WC, et al. (1987) The 1986 Lake Nyos gas disaster in Cameroon, West Africa. Science 236: 169–175. doi: 10.1126/science.236.4798.169
|
[9] | Sigurdsson H, Devince JD, Tchoua FM, Presser TS, Pringle MKW, et al. (1987) Origin of the lethal gas burst from Lake Monoun, Cameroon. J Volcanol Geotherm Res 31: 1–16. doi: 10.1016/0377-0273(87)90002-3
|
[10] | Barberi F, Chelini W, Marinelli G, Martini M (1989) The gas cloud of Lake Nyos (Cameroon, 1986): Results of the Italian technical mission. J Volcanol Geotherm Res 39: 125–134. doi: 10.1016/0377-0273(89)90053-x
|
[11] | Giggenbach WF (1990) Water and gas chemistry of Lake Nyos and its bearing on the eruptive process. J Volcanol Geotherm Res 42: 337–362. doi: 10.1016/0377-0273(90)90031-a
|
[12] | Evans WC, Kling GW, Tuttle ML, Tanyileke G, White LD (1993) Gas buildup in Lake Nyos, Cameroon: the recharge process and its consequences. Appl Geochem 8: 207–221. doi: 10.1016/0883-2927(93)90036-g
|
[13] | Evans WC, White LD, Tuttle ML, Kling GW, Tanyileke G, et al. (1994) Six years of changes at Lake Nyos, Cameroon, yield clues to the past and cautions for the future. Geochem J 28: 139–162. doi: 10.2343/geochemj.28.139
|
[14] | Kusakabe M (1996) Hazardous crater lakes. In: Scarpa R, Tilling RI, editors.Monitoring and mitigation of volcano hazards.Springer-Verlag, Berlin. pp. 573–598.
|
[15] | Rice A (2000) Rollover in volcanic crater lakes: a possible cause for Lake Nyos type disasters. J Volcanol Geotherm Res 97: 233–239. doi: 10.1016/s0377-0273(99)00179-1
|
[16] | Haberyan KA, Horn SP, Uma?a GV (2003) Basic limnology of fifty-one lakes in Costa Rica. Rev Biol Trop 51: 107–122.
|
[17] | Tassi F, Vaselli O, Fernandez E, Duarte E, Martinez M, et al. (2009b) Morphological and geochemical features of crater lakes in Costa Rica: an overview. J Limnol 68: 193–205. doi: 10.4081/jlimnol.2009.193
|
[18] | Alvarado GE, Soto GJ, Salani FM, Ruiz P, Hurtado de Mendoza L (2011) The formation and evolution of Hule and Río Cuarto maars, Costa Rica. J Volcanol Geotherm Res 201: 342–356. doi: 10.1016/j.jvolgeores.2010.12.017
|
[19] | Horn SP, Haberyan KA (1993) Physical and chemical properties of Costa Rican lakes. Natl Geogr Res Explor 9(1): 86–103.
|
[20] | Horn SP (2001) The age of the Laguna Hule explosion crater, Costa Rica, and the timing of subsequent tephra eruptions: evidence from lake sediments. Rev Geol Am Cent 24: 57–66.
|
[21] | Uma?a G, Haberyan KA, Horn SP (1999) Limnology in Costa Rica. In: Gopal B, Wetzel RW, editors. Limnology in Developing Countries 2: : 33–62.
|
[22] | Haberyan KA, Horn SP (1999) Chemical and physical characteristics of seven volcanic lakes in Costa Rica. Brenesia 51: 85–95.
|
[23] | Uma?a G (1993) The planktonic community of Laguna Hule, Costa Rica. Rev Biol Trop 41(3): 499–507.
|
[24] | G?cke K (1997) Basic morphometric and limnological properities of Laguna Hule, a caldera lake in Costa Rica. Rev Biol Trop 44/45: 537–548.
|
[25] | G?cke K, Bussing W, Cortés J (1987) Morphometric and basic limnological properties of the Laguna de Río Cuarto, Costa Rica. Rev Biol Trop 35(2): 277–285.
|
[26] | Carpenter SR (1983) Lake geometry: implications for production and sediment accretion rates. J Theor Biol 105: 273–286. doi: 10.1016/s0022-5193(83)80008-3
|
[27] | Lehman JT (1975) Reconstructing the rate of accumulation of lake sediment. The effect of sediment focusing. Quatern Res 5: 541–550. doi: 10.1016/0033-5894(75)90015-0
|
[28] | Martini M, Giannini L, Prati F, Tassi F, Capaccioni B, et al. (1994) Chemical characters of crater lakes in the Azores and Italy: the anomaly of the Lake Albano. Geochem J. 28: 173–184. doi: 10.2343/geochemj.28.173
|
[29] | Wetzel RG (2001) Limnology: Lake and River Ecosystems. 3rd Ed., Academic, San Diego, Calif., USA.
|
[30] | Soto GJ (1999) Geología Regional de la hoja Poás (1: 50.000). In: Alvarado GE, Madrigal LA, editors. Estudio Geológico-Geotécnico de Avance a factibilidad del P. Laguna Hule. Inf. Interno ICE, San José, Costa Rica. pp. 15–45.
|
[31] | Sapper K (1925) Los Volcanes de la América Central. Max Niemayer, Halle (Saale). 144 p.
|
[32] | G?cke K, Bussing W, Cortés J (1990) The annual cycle of primary productivity in Laguna de Río Cuarto, a volcanic lake (maar) in Costa Rica. Rev Biol Trop 38(2B): 387–394.
|
[33] | Tassi F, Vaselli O, Giannini L, Tedesco D, Nencetti A, et al.. (2004) A low-cost and effective method to collect water and gas samples from stratified crater lakes: the 485 m deep lake Kivu (DRC). Proc. IAVCEI Gen. Ass., Puchon, Chile, 14–19 November 2004.
|
[34] | Tassi F, Vaselli O, Tedesco D, Montegrossi G, Darrah T, et al.. (2009a) Water and gas chemistry at Lake Kivu (DRC): geochemical evidence of vertical and horizontal heterogeneities in a multi-basin structure Geochem. Geophys. Geosyst. 10, doi:10.1029/2008GC002191
|
[35] | Tassi F, Rouwet D (2014) An overview of the structure, hazards, and methods of investigation of Nyos-type lakes from the geochemical perspective. J Limnol 73(1): DOI: 10.4081/jlimnol.2014.836
|
[36] | Chiodini G (1996) Gases dissolved in groundwaters: analytical methods and examples of applications in central Italy. In: Marini L, Ottonello G, editors. Proc. Symp.Environmental Geochemistry. Castelnuovo di Porto, Rome, 22–26 May 1996. pp. 135–148.
|
[37] | Caliro S, Chiodini G, Izzo G, Minopoli C, Signorini A, et al. (2008) Geochemical and biochemical evidence of lake overturn and fish kill at Lake Averno, Italy. J Volcanol Geotherm Res 178: 305–316. doi: 10.1016/j.jvolgeores.2008.06.023
|
[38] | Tassi F, Vaselli O, Luchetti G, Montegrossi G, Minissale A (2008)Metodo per la determinazione dei gas disciolti in acque naturali. Int Rep CNR-IGG, Florence, n° 10450. 11 p.
|
[39] | Calabrese S, Aiuppa A, Allard P, Bagnato E, Bellomo S, et al. (2011) Atmospheric sources and sinks of volcanogenic elements in a basaltic volcano (Etna, Italy). Geochim Cosmochim Acta 75: 7401–7425. doi: 10.1016/j.gca.2011.09.040
|
[40] | Epstein S, Mayeda TK (1953) Variation of the 18O/16O ratio in natural waters. Geochim Cosmochim Acta 4: 213–224.
|
[41] | Nelson ST (2000) A simple, practical methodology for routine VSMOW/SLAP normalization of water samples analyzed by continuous flow methods. Rapid Commun Mass Spectrom 14: 1044–1046. doi: 10.1002/1097-0231(20000630)14:12<1044::aid-rcm987>3.0.co;2-3
|
[42] | Salata GG, Roelke LA, Cifuentes LA (2000) A rapid and precise method for measuring stable carbon isotope ratios of dissolved inorganic carbon. Mar Chem 69: 153–161. doi: 10.1016/s0304-4203(99)00102-4
|
[43] | Evans WC, White LD, Rapp JB (1998) Geochemistry of some gases in hydrothermal fluids from the southern Juan de Fuca ridge. J Geophys Res 15: 305–313. doi: 10.1029/jb093ib12p15305
|
[44] | Vaselli O, Tassi F, Montegrossi G, Capaccioni B, Giannini L (2006) Sampling and analysis of fumarolic gases. Acta Vulcanol 1–2: 65–76.
|
[45] | Whitfield M (1978) Activity coefficients in natural waters. In: Pytkowicz RM, editor.Activity Coefficients in Electrolyte Solutions. CRC Press, Boca Raton, Florida, pp. 153–300.
|
[46] | Zhang J, Quay PD, Wilbur DO (1995) Carbon isotope fractionation during gas-water exchange and dissolution of CO2. Geochim Cosmochim Acta 59: 107–114. doi: 10.1016/0016-7037(95)91550-d
|
[47] | Schoell M (1980) The hydrogen and carbon isotopic composition of methane from natural gases of various origins. Geochim Cosmochim Acta 44: 649–661. doi: 10.1016/0016-7037(80)90155-6
|
[48] | Mamyrin BA, Tolstikhin IN (1984) Helium isotopes in nature. Elsevier, Amsterdam.
|
[49] | Ozima M, Podosek FA (2002) Noble Gas Geochemistry. Cambridge University Press, UK.
|
[50] | Inguaggiato S, Rizzo A (2004) Dissolved helium isotope ratios in ground-waters: a new technique based on gas-water re-equilibration and its application to Stromboli volcanic system. Appl Geochem 19: 665–673 http://dx.doi.org/10.1016/j.apgeochem.20?03.10.009.
|
[51] | Mapelli F, Varela MM, Barbato M, Alvari?o R, Fusi M, et al. (2013) Biogeography of planktonic microbial communities across the whole Mediterranean Sea. Ocean Sci Discuss 10: 291–319 doi:10.5194/osd-10-291-2013.
|
[52] | Marasco R, Rolli E, Ettoumi B, Vigani G, Mapelli F, et al. (2012) A drought resistance-promoting microbiome is selected by root system under desert farming. PLoS ONE 7(10): e48479 doi:10.1371/journal.pone.0048479.
|
[53] | Harhangi HR, Le Roy M, van Alen T, Hu B-I, Groen J, et al. (2012) Hydrazine synthase, a unique phylomarker with which to study the presence and biodiversity of anammox bacteria. Appl Environ Microbiol 78: 752–758. doi: 10.1128/aem.07113-11
|
[54] | Van de Peer Y, Chapelle S, De Wachter R (1996) A quantitative map of nucleotide substitution rates in bacterial rRNA. Nucleic Acids Res 24(17): 3381–3391. doi: 10.1093/nar/24.17.3381
|
[55] | Chakravorty S, Helb D, Burday M, Connell N, Alland D (2007) A detailed analysis of 16S ribosomal RNA gene segments for the diagnosis of pathogenic bacteria. J Microbiol Methods 69: 330–339. doi: 10.1016/j.mimet.2007.02.005
|
[56] | Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, et al. (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7: 335–336. doi: 10.1038/nmeth.f.303
|
[57] | Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26(19): 2460–2461. doi: 10.1093/bioinformatics/btq461
|
[58] | Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Na?ve Bayesian Classifier for Rapid Assignment of rRNA Sequences into the New Bacterial Taxonomy. Appl Environ Microbiol 73(16): 5261–5267. doi: 10.1128/aem.00062-07
|
[59] | Hammer ?, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electronica 4(4): 1–9.
|
[60] | Uma?a G (2010) Comparison of basic limnological aspects of some crater lakes in the Cordillera Volcánica Central, Costa Rica. Rev Geol Amér Central 43: 137–145.
|
[61] | Craig H, Lupton JE (1976) Primordial neon, helium and hydrogen in oceanic basalts. Earth Planet Sci Lett 31: 369–385. doi: 10.1016/0012-821x(76)90118-7
|
[62] | Wu QL, Zwart G, Schauer M, Kamst-van Agterveld MP, Hahn MW (2006) Bacterioplankton Community Composition along a Salinity Gradient of Sixteen High-Mountain Lakes Located on the Tibetan Plateau, China. AEM 72: 5478–5485. doi: 10.1128/aem.00767-06
|
[63] | Zhu G, Jetten MSM, Kuschk P, Ettwig KF, Yin C (2010) Potential roles of anaerobic ammonium and methane oxidation in the nitrogen cycle of wetland ecosystems. Appl Microbiol Biotechnol 86: 1043–1055. doi: 10.1007/s00253-010-2451-4
|
[64] | Varekamp JC, Kreulen R (2000) The stable isotope geochemistry of volcanic lakes, with examples from Indonesia. J Volcanol Geotherm Res 97: 309–327. doi: 10.1016/s0377-0273(99)00175-4
|
[65] | Craig H (1961) Isotopic variations in meteoric waters. Science 133: 1702–1703. doi: 10.1126/science.133.3465.1702
|
[66] | Lachniet MS, Patterson WP (2002) Stable isotope values of Costa Rican surface waters. J Hydrol 260: 135–150. doi: 10.1016/s0022-1694(01)00603-5
|
[67] | Berner EK, Berner RA (1987) Global Water Cycle: Geochemistry and Environment. Prentice-Hall, Inc, Englewood Cliffs, New Jersey. p. 397.
|
[68] | Matsubaya O, Sakai H (1978) D/H and 18O/16O fractionation factors in evaporation of water at 60 and 80°C. Geochem J 12: 121–126. doi: 10.2343/geochemj.12.121
|
[69] | Rowe GL Jr (1994) Oxygen, hydrogen and sulfur isotope systematics of the crater lake system of Poas volcano, Costa Rica. Geochem J 28: 263–287. doi: 10.2343/geochemj.28.263
|
[70] | Alexander M (1961) Introduction to Soil Microbiology. John Wiley & Sons, New York. p. 472.
|
[71] | Buresh RJ, Patrick WH (1981) Nitrate reduction to ammonium and organic nitrogen in an estuarine sediment. Soil Biol Biochem 13: 279–283. doi: 10.1016/0038-0717(81)90063-8
|
[72] | Stewart WDP, Preston T, Peterson HG, Christofi N (1982) Nitrogen cycling in eutrophic freshwaters. Philosoph Transact Royal Soc B 296: 491–509. doi: 10.1098/rstb.1982.0022
|
[73] | Ahlgren I, S?rensson F, Waara T, Vrede K (1994) Nitrogen budgets in relation to microbial transformations in lakes. Ambio 23(6): 367–377.
|
[74] | Brune A, Frenzel P, Cypionka H (2000) Life at the oxic-anoxic interface: microbial activities and adaptation. FEMS Microbiol Rev 24(5): 691–710. doi: 10.1111/j.1574-6976.2000.tb00567.x
|
[75] | Carlson CA, Ingraham JL (1983) Comparison of denitrification by Pseudomonas stutzeri, Pseudomonas aeruginosa, and Paracoccus denitrificans. Appl Environ Microbiol 45: 1247–1253.
|
[76] | Molongoski JJ, Klug MJ (1980) Anaerobic metabolism of particulate organic matter in the sediments of a hypereutrophic lake. Freshwater Biol 10: 507–518. doi: 10.1111/j.1365-2427.1980.tb01225.x
|
[77] | Davison W, Heaney SI, Talling JF, Rigg E (1980) Seasonal transformations and movements of iron in a productive English lake with deep water anoxia. Schweiz Z Hydrol 42: 196–224. doi: 10.1007/bf02502434
|
[78] | Balistrieri LS, Murray JW, Paul B (1992) The cycling of iron and manganese in the water column of Lake Sammamish, Washington. Limnol Oceanogr 37: 510–528. doi: 10.4319/lo.1992.37.3.0510
|
[79] | Hongve D (1997) Cycling of iron, manganese, and phosphate in a meromictic lake. Limnol Oceanogr 42: 635–647. doi: 10.4319/lo.1997.42.4.0635
|
[80] | Prosser JT, Carr MJ (1987) Poás volcano, Costa Rica: geology of the summit region and spatial and temporal variations among the most recent lavas. J Volcanol Geotherm Res 33: 131–146. doi: 10.1016/0377-0273(87)90057-6
|
[81] | Balistrieri LS, Murray JW, Paul B (1994) The geochemical cycling of trace elements in a biogenic meromictic lake. Geochim Cosmochim Acta 58(19): 3993–4008. doi: 10.1016/0016-7037(94)90262-3
|
[82] | Viollier E, Jezequel D, Michard G, Pepe M, Sarazin G, et al. (1995) Geochemical study of a crater lake (Pavin Lake, France): trace-element behaviour in the monimolimnion. Chem Geol 125(1–2): 61–72. doi: 10.1016/0009-2541(95)00059-u
|
[83] | Schaller T, Moor HC, Wehrli B (1997) Reconstructing the iron cycle from the horizontal distribution of metals in the sediment of Baldeggersee. Aquat Sci 59: 326–344. doi: 10.1007/bf02522362
|
[84] | Varekamp JC, Pasternack GB, Rowe GL Jr (2000) Volcanic lake systematics II. Chemical constraints. J Volcanol Geotherm Res 97: 161–179. doi: 10.1016/s0377-0273(99)00182-1
|
[85] | Schmid M, Halbwachs M, Wehrli B, Wüest A (2005) Weak mixing in Lake Kivu: new insights indicate increasing risk of uncontrolled gas eruption. Geochem Geophys Geosyst 6: 1–11. doi: 10.1029/2004gc000892
|
[86] | Cabassi J, Tassi F, Vaselli O, Fiebig J, Nocentini M, et al. (2013) Biogeochemical processes involving dissolved CO2 and CH4 at Albano, Averno, and Monticchio meromictic volcanic lakes (Central-Southern Italy). Bull Volcanol 75(1): 1–19. doi: 10.1007/s00445-012-0683-0
|
[87] | Weiss R (1970) The solubility of nitrogen, oxygen and argon in water and seawater. Deep Sea Res 17: 721–735. doi: 10.1016/0011-7471(70)90037-9
|
[88] | Tison DL, Palmer FE, Staley JT (1977) Nitrogen fixation in lakes of the Lake Washington drainage basin. Water Res 11: 843–847. doi: 10.1016/0043-1354(77)90055-0
|
[89] | Hyenstrand P, Blomqvist P, Pettersson A (1998) Factors determining cyanobacterial success in aquatic systems – a literature review. Arch Hydrobiol 15: 41–62.
|
[90] | Moeller RE, Roskoski JP (1978) Nitrogen-fixation in the littoral benthos of an oligotrophic lake. Hydrobiologia 60(1): 13–16. doi: 10.1007/bf00018682
|
[91] | Loeb SL, Reuter JE (1981) The epilithic periphyton community: a five-lake comparative study of community productivity, nitrogen metabolism and depth-distribution of standing crop. Verh Internat Verein Limnol 21: 346–352.
|
[92] | Valiela I (1991) Ecology of coastal ecosystems. In: Barnes RSK, Mann KH, editors.Fundamentals of aquatic ecology. Blackwell Science, Oxford, pp. 57–76.
|
[93] | Benemann JR, Weare NM (1974) Hydrogen evolution by nitrogen-fixing Anabaena cylindrical cultures. Science 184: 174–175. doi: 10.1126/science.184.4133.174
|
[94] | Greenbaum E (1982) Photosynthetic hydrogen and oxygen production: kinetic studies. Science 215: 291–293. doi: 10.1126/science.215.4530.291
|
[95] | Asada Y, Kawamura S (1986) Aerobic hydrogen accumulation by a nitrogen-fixing Cyanobacterium, Anabaena sp. Appl Environ Microbiol 51: 1063–1066.
|
[96] | Asada Y, Miyake J (1999) Photobiological hydrogen production. J Biosci Bioengineer 88(1): 1–6. doi: 10.1016/s1389-1723(99)80166-2
|
[97] | Bandyopadhyay B, St?ckel J, Min H, Sherman LA, Pakrasi HB (2010) High rates of photobiological H2 production by a cyanobacterium under aerobic conditions. Nature Communications 1: 139 doi:10.1038/ncomms1139.
|
[98] | Mah RA, Ward DM, Baresi L, Glass TL (1977) Biogenesis of methane. Annu Rev Microbiol 31: 309–341. doi: 10.1146/annurev.mi.31.100177.001521
|
[99] | Zehnder AJB (1978) Ecology of methane formation. In: Michell R, editor.Water pollution microbiologyk. J. Wiley & Sons Inc, New York. pp. 349–376.
|
[100] | Thauer RK, Badziong W (1980) Respiration with sulfate as electron acceptor. In: Knowles CJ, editor.Diversity of bacterial respiratory systems. CRC Press, Boca Raton, Fla, 2. pp. 65–85.
|
[101] | Aragno M, Schlegel HG (1981) The hydrogen-oxidizing bacteria. In: Starr MP, Stolp H, Trüper HG, Ballows A, Schlegel HG, editors.The prokaryotes. A handbook of habitats, isolation and identification of bacteria. Vol. 1 . Springer-Verlag, Berlin.
|
[102] | Bowien B, Schlegel HG (1981) Physiology and biochemistry of aerobic hydrogen-oxidizing bacteria. Ann Rev Microbiol 35: 405–452. doi: 10.1146/annurev.mi.35.100181.002201
|
[103] | Conrad R, Aragno M, Seiler W (1983) Production and consumption of hydrogen in a eutrophic lake. Appl Environ Microbiol 45: 502–510. doi: 10.4319/lo.1983.28.1.0042
|
[104] | Bianchi L, Mannelli F, Viti C, Adessi A, De Philippis R (2010) Hydrogen-producing purple non-sulfur bacteria isolated from the trophic lake Averno. Int J Hydr En 35: 12213–12223. doi: 10.1016/j.ijhydene.2010.08.038
|
[105] | Zimmer MM, Fisher TP, Hilton DH, Alvarado GE, Sharp ZD, et al. (2004) Nitrogen systematics and gas fluxes of subduction zones: insights from Costa Rica arc volatiles. Geochem Geophys Geosyst 5(5): 1–19 doi:10.1029/2003GC000651.
|
[106] | Barnes I, Irwin WP, White DE (1978) Global distribution of carbon dioxide discharges and major zones of seismicity. US Geological Survey, Water-Resources Investigation, 78–39, Open File Report.
|
[107] | O'Leary MH (1988) Carbon isotopes in photosynthesis. BioScience 38: 328–336. doi: 10.2307/1310735
|
[108] | Rollinson H (1993) Using geochemical data: evaluation, presentation, interpretation. Longman Scientific and Technical, New York, p. 352.
|
[109] | Hoefs J (2009) Stable Isotope Geochemistry, 6th edn. Springer, Berlin, Germany, p. 288.
|
[110] | Whiticar MJ (1999) Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chem Geol 161: 291–314. doi: 10.1016/s0009-2541(99)00092-3
|
[111] | Alvarado GE, Soto GJ, Pullinger CR, Escobar R, Bonis S, et al.. (2007) Volcanic activity, hazards, and monitoring. In: Bundschuh J, Alvarado GE, editors.Central America: Geology, Resources and Hazards, Vol. 2 . Taylor & Francis, London, pp. 1155–1188.
|
[112] | Mah RA, Ward DM, Baresi L, Glass TL (1977) Biogenesis of methane. Annu Rev Microbiol 31: 309–341. doi: 10.1146/annurev.mi.31.100177.001521
|
[113] | Barker JF, Fritz P (1981) Carbon isotope fractionation during microbial methane oxidation. Nature 293: 289–291. doi: 10.1038/293289a0
|
[114] | Schoell M (1988) Multiple origins of methane in the Earth. Chem Geol 71: 1–10. doi: 10.1016/0009-2541(88)90101-5
|
[115] | Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms: proposal for the domains Archaea, Bacteria and Eucarya. Proc Natl Acad Sci 87: 44576–44579. doi: 10.1073/pnas.87.12.4576
|
[116] | Rudd JWM, Hamilton RD, Campbell NER (1974) Measurement of microbial oxidation of methane in lake water. Limnol Oceanogr 19: 519–524. doi: 10.4319/lo.1974.19.3.0519
|
[117] | Rich PH (1975) Benthic metabolism of a soft-water lake. Verh Internat Verein Limnol 19: 1023–1028.
|
[118] | Rich PH (1980) Hypolimnetic metabolism in three Cape Cod lakes. Amer Midland Natur 104: 102–109. doi: 10.2307/2424963
|
[119] | Frenzel P, Thebrath B, Conrad R (1990) Oxidation of methane in the oxic surface layer of a deep lake sediment (Lake Constance). FEMS Microbiol Ecol 73: 149–158. doi: 10.1111/j.1574-6968.1990.tb03935.x
|
[120] | Casper P (1992) Methane production in lakes of different trophic state. Arch Hydrobiol Beih Ergebn Limnol 37: 149–154.
|
[121] | Lopes F, Viollier E, Thiam A, Michard G, Abril G, et al. (2011) Biogeochemical modeling of anaerobic vs. aerobic methane oxidation in a meromictic crater lake (Lake Pavin, France). Appl Geochem 26: 1919–1932. doi: 10.1016/j.apgeochem.2011.06.021
|
[122] | Franzmann PD, Liu YT, Balkwill DL, Aldrich HC, deMacario EC, et al. (1997) Methanogenium frigidum sp. nov., a psychrophilic, H2-using methanogen from Ace Lake, Antarctica. Int J Syst Bacteriol 47: 1068–1072. doi: 10.1099/00207713-47-4-1068
|
[123] | Br?uer SL, Cadillo-Quiroz H, Ward RJ, Yavitt JB, Zinder SH (2011) Methanoregula boonei gen. nov., sp. nov., an acidiphilic methanogen isolated from an acidic peat bog. Int J Syst Evol Microbiol 61: 45–52. doi: 10.1099/ijs.0.021782-0
|
[124] | Chaudhary PP, Brablcová L, Buriánková I, Rulík M (2013) Molecular diversity and tools for deciphering the methanogen community structure and diversity in freshwater sediments. Appl Microbiol Biotechnol 97: 7553–7562. doi: 10.1007/s00253-013-5102-8
|
[125] | Borrel G, Jézéquel D, Biderre-Petit C, Morel-Desrosiers N, Morel J, et al. (2011) Production and consumption of methane in freshwater lake ecosystems. Res Microbiol 162: 832–847. doi: 10.1016/j.resmic.2011.06.004
|
[126] | Baker BJ, Tyson GW, Webb RI, Flanagan J, Hugenholtz P, et al. (2006) Lineages of acidophilic Archaea revealed by community genomic analysis. Science 314: 1933–1935 doi:10.1126/science.1132690.
|
[127] | Baker BJ, Comolli LR, Dicka GJ, Hauser LJ, Hyatt D, et al. (2010) Enigmatic, ultrasmall, uncultivated Archaea. PNAS 107: 8806–8811. doi: 10.1073/pnas.0914470107
|
[128] | Borrel G, Lehours A-C, Crouzet O, Jézéquel D, Rockne K, et al. (2012) Stratification of Archaea in the deep sediments of a freshwater meromictic lake: Vertical Shift from Methanogenic to Uncultured Archaeal Lineages. PLoS ONE 7: e43346 doi:10.1371/journal.pone.0043346.
|
[129] | Biddle JF, Lipp JS, Lever MA, Lloyd KG, S?rensen KB, et al. (2006) Heterotrophic Archaea dominate sedimentary subsurface ecosystems off Peru. PNAS 103: 3846–3851. doi: 10.1073/pnas.0600035103
|
[130] | Stoecker K, Bendinger B, Sch?ning B, Nielsen PH, Nielsen JL, et al. (2006) Cohn's Crenothrix is a filamentous methane oxidizer with an unusual methane monooxygenase. PNAS 103: 2363–2367. doi: 10.1073/pnas.0506361103
|
[131] | Chistoserdova L, Kalyuzhnaya MG, Lidstrom ME (2009) The expanding world of methylotrophic metabolism. Annu Rev Microbiol 63: 477–499 doi:10.1146/annurev.micro.091208.073600.
|
[132] | Beck DAC, Kalyuzhnaya MG, Malfatti S, Tringe SG, del Rio TG, et al. (2013) A metagenomic insight into freshwater methane-utilizing communities and evidence for cooperation between the Methylococcaceae and the Methylophilaceae. PeerJ 1: e23 doi:10.7717/peerj.23.
|
[133] | Jezbera J, Jezberová J, Kasalicky V, ?imek K, Hahn MW (2013) Patterns of Limnohabitans microdiversity across a large set of freshwater habitats as revealed by reverse line blot hybridization. PLoS ONE 8: e58527 doi:10.1371/journal.pone.0058527.
|
[134] | Maness P, Huang J, Smolinski S, Tek V, Vanzin G (2005) Energy generation from the CO oxidation-hydrogen production pathway in Rubrivivax gelatinosus. Appl Environ Microbiol 71: 2870–2874. doi: 10.1128/aem.71.6.2870-2874.2005
|
[135] | Harmsen HJM, Van Kuijk BLM, Plugge CM, Akkermans ADL, De Vos WM, et al. (1998) Syntrophobacter furnaroxidans sp nov, a syntrophic propionate-degrading sulfate-reducing bacterium. Int J Syst Bact 48: 1383–1387. doi: 10.1099/00207713-48-4-1383
|
[136] | Hug LA, Castelle CJ, Wrighton KC, Thomas BC, Sharon I, et al. (2013) Community genomic analyses constrain the distribution of metabolic traits across the Chloroflexi phylum and indicate roles in sediment carbon cycling. Microbiome 1: 22 doi:10.1186/2049-2618-1-22.
|
[137] | Zanaroli G, Balloi A, Negroni A, Borruso L, Daffonchio D, et al. (2012) A Chloroflexi bacterium dechlorinates polychlorinated biphenyls in marine sediments under in situ-like biogeochemical conditions. J Haz Mat 209–210: 449–457. doi: 10.1016/j.jhazmat.2012.01.042
|
[138] | Balloi A, Rolli E, Marasco R, Mapelli F, Tamagnini I, et al. (2010) The role of microorganisms in bioremediation and phytoremediation of polluted and stressed soils. Agrochimica 54(6): 353–369.
|
[139] | Mook WG, Bommerson JC, Staverman WH (1974) Carbon isotope fractionation between dissolved bicarbonate and gaseous carbon dioxide. Earth Planet Sci Lett 22: 169–176. doi: 10.1016/0012-821x(74)90078-8
|
[140] | Zwart G, Crump BC, Agterveld M, Hagen F, Han SK (2002) Typical freshwater bacteria: an analysis of available 16S rRNA gene sequences from plankton of lakes and rivers. Aquat Microb Ecol 28: 141–155. doi: 10.3354/ame028141
|
[141] | Eigemann F, Hilt S, Salka I, Grossart H (2013) Bacterial community composition associated with freshwater algae: species specificity vs. dependency on environmental conditions and source community. FEMS Microbiol Ecol 83: 650–663. doi: 10.1111/1574-6941.12022
|
[142] | Paver SF, Hayek KR, Gano KA, Fagen JR, Brown CT, et al. (2013) Interactions between specific phytoplankton and bacteria affect lake bacterial community succession. Environ Microbiol 15: 2489–2504. doi: 10.1111/1462-2920.12131
|
[143] | Kusakabe M, Ohba T, Issa YY, Satake H, Ohizumi T, et al. (2008) Evolution of CO2 in lakes Monoun and Nyos, Cameroon, before and during controlled degassing. Geochem J 42: 93–118. doi: 10.2343/geochemj.42.93
|
[144] | Schoell M, Tietze K, Schoberth SM (1988) Origin of methane in Lake Kivu (East-Central Africa). Chem Geol 71: 257–265. doi: 10.1016/0009-2541(88)90119-2
|
[145] | Carapezza ML, Lelli M, Tarchini L (2008) Geochemistry of the Albano and Nemi crater lakes in the volcanic district of Alban Hills (Rome, Italy). J Volcanol Geotherm Res 178: 297–304. doi: 10.1016/j.jvolgeores.2008.06.031
|
[146] | Caracausi A, Nuccio PM, Favara R, Nicolosi M, Paternoster M (2009) Gas hazard assessment at the Monticchio crater lakes of Mt Vulture, a volcano in Southern Italy. Terra Nova 21: 83–87. doi: 10.1111/j.1365-3121.2008.00858.x
|
[147] | Chiodini G, Tassi F, Caliro S, Chiarabba C, Vaselli O, et al. (2012) Time-dependent CO2 variations in Lake Albano associated with seismic activity. Bull Volcanol 74: 861–871. doi: 10.1007/s00445-011-0573-x
|
[148] | Aeschbach-Hertig W, Hofer M, Kipfer R, Imboden DM, Wieler R (1999) Accumulation of mantle gases in a permanently stratified volcanic lake (Lac Pavin, France). Geochim Cosmochim Acta 63: 3357–3372. doi: 10.1016/s0016-7037(99)00257-4
|