全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Mycoplasma pneumoniae CARDS Toxin Exacerbates Ovalbumin-Induced Asthma-Like Inflammation in BALB/c Mice

DOI: 10.1371/journal.pone.0102613

Full-Text   Cite this paper   Add to My Lib

Abstract:

Mycoplasma pneumoniae causes a range of airway and extrapulmonary pathologies in humans. Clinically, M. pneumoniae is associated with acute exacerbations of human asthma and a worsening of experimentally induced asthma in mice. Recently, we demonstrated that Community Acquired Respiratory Distress Syndrome (CARDS) toxin, an ADP-ribosylating and vacuolating toxin synthesized by M. pneumoniae, is sufficient to induce an asthma-like disease in BALB/cJ mice. To test the potential of CARDS toxin to exacerbate preexisting asthma, we examined inflammatory responses to recombinant CARDS toxin in an ovalbumin (OVA) murine model of asthma. Differences in pulmonary inflammatory responses between treatment groups were analyzed by histology, cell differentials and changes in cytokine and chemokine concentrations. Additionally, assessments of airway hyperreactivity were evaluated through direct pulmonary function measurements. Analysis of histology revealed exaggerated cellular inflammation with a strong eosinophilic component in the CARDS toxin-treated group. Heightened T-helper type-2 inflammatory responses were evidenced by increased expression of IL-4, IL-13, CCL17 and CCL22 corresponding with increased airway hyperreactivity in the CARDS toxin-treated mice. These data demonstrate that CARDS toxin can be a causal factor in the worsening of experimental allergic asthma, highlighting the potential importance of CARDS toxin in the etiology and exacerbation of human asthma.

References

[1]  Lemanske RF Jr, Busse WW (2010) Asthma: clinical expression and molecular mechanisms. J Allergy Clin Immunol 125: S95–102. doi: 10.1016/j.jaci.2009.10.047
[2]  Blasi F (2004) Atypical pathogens and respiratory tract infections. Eur Respir J 24: 171–181. doi: 10.1183/09031936.04.00135703
[3]  Johnston SL, Martin RJ (2005) Chlamydophila pneumoniae and Mycoplasma pneumoniae: a role in asthma pathogenesis? Am J Respir Crit Care Med 172: 1078–1089. doi: 10.1164/rccm.200412-1743pp
[4]  Kraft M, Cassell GH, Henson JE, Watson H, Williamson J, et al. (1998) Detection of Mycoplasma pneumoniae in the airways of adults with chronic asthma. Am J Respir Crit Care Med 158: 998–1001. doi: 10.1164/ajrccm.158.3.9711092
[5]  Kraft M, Cassell GH, Pak J, Martin RJ (2002) Mycoplasma pneumoniae and Chlamydia pneumoniae in asthma: effect of clarithromycin. Chest 121: 1782–1788. doi: 10.1378/chest.121.6.1782
[6]  Lieberman D, Printz S, Ben-Yaakov M, Lazarovich Z, Ohana B, et al. (2003) Atypical pathogen infection in adults with acute exacerbation of bronchial asthma. Am J Respir Crit Care Med 167: 406–410. doi: 10.1164/rccm.200209-996oc
[7]  Martin RJ, Kraft M, Chu HW, Berns EA, Cassell GH (2001) A link between chronic asthma and chronic infection. J Allergy Clin Immunol 107: 595–601. doi: 10.1067/mai.2001.113563
[8]  Seggev JS, Lis I, Siman-Tov R, Gutman R, Abu-Samara H, et al. (1986) Mycoplasma pneumoniae is a frequent cause of exacerbation of bronchial asthma in adults. Ann Allergy 57: 263–265.
[9]  Waites KB, Talkington DF (2004) Mycoplasma pneumoniae and its role as a human pathogen. Clin Microbiol Rev 17: 697–728, table of contents.
[10]  Atkinson TP, Balish MF, Waites KB (2008) Epidemiology, clinical manifestations, pathogenesis and laboratory detection of Mycoplasma pneumoniae infections. FEMS microbiology reviews 32: 956–973. doi: 10.1111/j.1574-6976.2008.00129.x
[11]  Hardy RD, Jafri HS, Olsen K, Hatfield J, Iglehart J, et al. (2002) Mycoplasma pneumoniae induces chronic respiratory infection, airway hyperreactivity, and pulmonary inflammation: a murine model of infection-associated chronic reactive airway disease. Infect Immun 70: 649–654. doi: 10.1128/iai.70.2.649-654.2002
[12]  Martin RJ, Chu HW, Honour JM, Harbeck RJ (2001) Airway inflammation and bronchial hyperresponsiveness after Mycoplasma pneumoniae infection in a murine model. Am J Respir Cell Mol Biol 24: 577–582. doi: 10.1165/ajrcmb.24.5.4315
[13]  Sutherland ER, Martin RJ (2007) Asthma and atypical bacterial infection. Chest 132: 1962–1966. doi: 10.1378/chest.06-2415
[14]  Peters J, Singh H, Brooks EG, Diaz J, Kannan TR, et al. (2011) Persistence of Community-Acquired Respiratory Distress Syndrome Toxin-Producing Mycoplasma pneumoniae in Refractory Asthma. Chest 140: 401–407. doi: 10.1378/chest.11-0221
[15]  Wood PR, Hill VL, Burks ML, Peters JI, Singh H, et al.. (2013) Mycoplasma pneumoniae in children with acute and refractory asthma. Annals of allergy, asthma & immunology: official publication of the American College of Allergy, Asthma, & Immunology 110: 328–334 e321.
[16]  Fonseca-Aten M, Rios AM, Mejias A, Chavez-Bueno S, Katz K, et al. (2005) Mycoplasma pneumoniae induces host-dependent pulmonary inflammation and airway obstruction in mice. Am J Respir Cell Mol Biol 32: 201–210. doi: 10.1165/rcmb.2004-0197oc
[17]  Chu HW, Honour JM, Rawlinson CA, Harbeck RJ, Martin RJ (2003) Effects of respiratory Mycoplasma pneumoniae infection on allergen-induced bronchial hyperresponsiveness and lung inflammation in mice. Infect Immun 71: 1520–1526. doi: 10.1128/iai.71.3.1520-1526.2003
[18]  Wu Q, Martin RJ, LaFasto S, Chu HW (2009) A low dose of Mycoplasma pneumoniae infection enhances an established allergic inflammation in mice: the role of the prostaglandin E2 pathway. Clin Exp Allergy 39: 1754–1763. doi: 10.1111/j.1365-2222.2009.03309.x
[19]  Hardy RD, Coalson JJ, Peters J, Chaparro A, Techasaensiri C, et al. (2009) Analysis of pulmonary inflammation and function in the mouse and baboon after exposure to Mycoplasma pneumoniae CARDS toxin. PLoS One 4: e7562. doi: 10.1371/journal.pone.0007562
[20]  Kannan TR, Baseman JB (2006) ADP-ribosylating and vacuolating cytotoxin of Mycoplasma pneumoniae represents unique virulence determinant among bacterial pathogens. Proc Natl Acad Sci U S A 103: 6724–6729. doi: 10.1073/pnas.0510644103
[21]  Kannan TR, Provenzano D, Wright JR, Baseman JB (2005) Identification and characterization of human surfactant protein A binding protein of Mycoplasma pneumoniae. Infect Immun 73: 2828–2834. doi: 10.1128/iai.73.5.2828-2834.2005
[22]  Medina JL, Coalson JJ, Brooks EG, Winter VT, Chaparro A, et al. (2012) Mycoplasma pneumoniae CARDS toxin induces pulmonary eosinophilic and lymphocytic inflammation. Am J Respir Cell Mol Biol 46: 815–822. doi: 10.1165/rcmb.2011-0135oc
[23]  Cosentini R, Tarsia P, Canetta C, Graziadei G, Brambilla AM, et al. (2008) Severe asthma exacerbation: role of acute Chlamydophila pneumoniae and Mycoplasma pneumoniae infection. Respir Res 9: 48. doi: 10.1186/1465-9921-9-48
[24]  Biscardi S, Lorrot M, Marc E, Moulin F, Boutonnat-Faucher B, et al. (2004) Mycoplasma pneumoniae and asthma in children. Clinical infectious diseases: an official publication of the Infectious Diseases Society of America 38: 1341–1346. doi: 10.1086/392498
[25]  Kraft M, Adler KB, Ingram JL, Crews AL, Atkinson TP, et al. (2008) Mycoplasma pneumoniae induces airway epithelial cell expression of MUC5AC in asthma. The European respiratory journal 31: 43–46. doi: 10.1183/09031936.00103307
[26]  Wu Q, Martin RJ, Lafasto S, Efaw BJ, Rino JG, et al. (2008) Toll-like receptor 2 down-regulation in established mouse allergic lungs contributes to decreased mycoplasma clearance. American journal of respiratory and critical care medicine 177: 720–729. doi: 10.1164/rccm.200709-1387oc
[27]  Bubeck SS, Cantwell AM, Dube PH (2007) Delayed inflammatory response to primary pneumonic plague occurs in both outbred and inbred mice. Infect Immun 75: 697–705. doi: 10.1128/iai.00403-06
[28]  Bell RE, Kuehl TJ, Coalson JJ, Ackerman NB Jr, Null DM Jr, et al. (1984) High-frequency ventilation compared to conventional positive-pressure ventilation in the treatment of hyaline membrane disease in primates. Crit Care Med 12: 764–768. doi: 10.1097/00003246-198409000-00017
[29]  Delemos RA, Coalson JJ, Gerstmann DR, Null DM Jr, Ackerman NB, et al. (1987) Ventilatory management of infant baboons with hyaline membrane disease: the use of high frequency ventilation. Pediatr Res 21: 594–602. doi: 10.1203/00006450-198706000-00018
[30]  Rucker G, Schimek-Jasch T, Nestle U (2012) Measuring inter-observer agreement in contour delineation of medical imaging in a dummy run using Fleiss' kappa. Methods of information in medicine 51: 489–494. doi: 10.3414/me12-01-0005
[31]  Fleiss JL (1971) Measuring nominal scale agreement among many raters. Psychological Bulletin 76: 378–382. doi: 10.1037/h0031619
[32]  Gonzalo JA, Lloyd CM, Kremer L, Finger E, Martinez AC, et al. (1996) Eosinophil recruitment to the lung in a murine model of allergic inflammation. The role of T cells, chemokines, and adhesion receptors. The Journal of clinical investigation 98: 2332–2345. doi: 10.1172/jci119045
[33]  Pope SM, Fulkerson PC, Blanchard C, Akei HS, Nikolaidis NM, et al. (2005) Identification of a cooperative mechanism involving interleukin-13 and eotaxin-2 in experimental allergic lung inflammation. J Biol Chem 280: 13952–13961. doi: 10.1074/jbc.m406037200
[34]  Kumar RK, Foster PS (2002) Modeling allergic asthma in mice: pitfalls and opportunities. Am J Respir Cell Mol Biol 27: 267–272. doi: 10.1165/rcmb.f248
[35]  Tomkinson A, Duez C, Cieslewicz G, Pratt JC, Joetham A, et al. (2001) A murine IL-4 receptor antagonist that inhibits IL-4- and IL-13-induced responses prevents antigen-induced airway eosinophilia and airway hyperresponsiveness. J Immunol 166: 5792–5800. doi: 10.4049/jimmunol.166.9.5792
[36]  Jacobsen EA, Ochkur SI, Pero RS, Taranova AG, Protheroe CA, et al. (2008) Allergic pulmonary inflammation in mice is dependent on eosinophil-induced recruitment of effector T cells. J Exp Med 205: 699–710. doi: 10.1084/jem.20071840
[37]  Johnson C, Kannan TR, Baseman JB (2011) Cellular vacuoles induced by Mycoplasma pneumoniae CARDS toxin originate from Rab9-associated compartments. PLoS One 6: e22877. doi: 10.1371/journal.pone.0022877
[38]  Kannan TR, Musatovova O, Balasubramanian S, Cagle M, Jordan JL, et al. (2010) Mycoplasma pneumoniae Community Acquired Respiratory Distress Syndrome toxin expression reveals growth phase and infection-dependent regulation. Mol Microbiol 76: 1127–1141. doi: 10.1111/j.1365-2958.2010.07092.x
[39]  Chu HW, Rino JG, Wexler RB, Campbell K, Harbeck RJ, et al. (2005) Mycoplasma pneumoniae infection increases airway collagen deposition in a murine model of allergic airway inflammation. Am J Physiol Lung Cell Mol Physiol 289: L125–133. doi: 10.1152/ajplung.00167.2004
[40]  Techasaensiri C, Tagliabue C, Cagle M, Iranpour P, Katz K, et al. (2010) Variation in colonization, ADP-ribosylating and vacuolating cytotoxin, and pulmonary disease severity among mycoplasma pneumoniae strains. Am J Respir Crit Care Med 182: 797–804. doi: 10.1164/rccm.201001-0080oc
[41]  Rosenberg HF, Dyer KD, Foster PS (2013) Eosinophils: changing perspectives in health and disease. Nature reviews Immunology 13: 9–22. doi: 10.1038/nri3341
[42]  Nair P, Pizzichini MM, Kjarsgaard M, Inman MD, Efthimiadis A, et al. (2009) Mepolizumab for prednisone-dependent asthma with sputum eosinophilia. The New England journal of medicine 360: 985–993. doi: 10.1056/nejmoa0805435
[43]  Haldar P, Brightling CE, Hargadon B, Gupta S, Monteiro W, et al. (2009) Mepolizumab and exacerbations of refractory eosinophilic asthma. The New England journal of medicine 360: 973–984. doi: 10.1056/nejmoa0808991
[44]  Rose CE Jr, Lannigan JA, Kim P, Lee JJ, Fu SM, et al. (2010) Murine lung eosinophil activation and chemokine production in allergic airway inflammation. Cellular & molecular immunology 7: 361–374. doi: 10.1038/cmi.2010.31
[45]  Wenzel SE, Vitari CA, Shende M, Strollo DC, Larkin A, et al. (2012) Asthmatic granulomatosis: a novel disease with asthmatic and granulomatous features. American journal of respiratory and critical care medicine 186: 501–507. doi: 10.1164/rccm.201203-0476oc

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133