The cellular prion protein (PrPC) is a glycosylphosphatidylinositol (GPI)-anchored glycoprotein on the cell surface. Previous studies have demonstrated contradictory roles for PrPC in connection with the phagocytic ability of macrophages. In the present work, we investigated the function of PrPC in phagocytosis and cytokine expression in bone marrow-derived macrophages infected with Escherichia coli. E. coli infection induced an increase in the PRNP mRNA level. Knockout of PrPC promoted bacterial uptake; upregulated Rab5, Rab7, and Eea1 mRNA expression; and increased the recruitment of lysosomal-associated membrane protein-2 to phagosomes, suggesting enhanced microbicidal activity. Remarkably, knockout of PrPC suppressed the proliferation of internalized bacteria and increased the expression of cytokines such as interleukin-1β. Collectively, our data reveal an important role of PrPC as a negative regulator for phagocytosis, phagosome maturation, cytokine expression, and macrophage microbicidal activity.
References
[1]
Metchnikoff E. (1905) Immunity in infective diseases. Cambridge University Press, Cambridge.
[2]
Aderem A, Underhill DM (1999) Mechanisms of phagocytosis in macrophages. Annual review of immunology 17: 593–623. doi: 10.1146/annurev.immunol.17.1.593
[3]
Sansonetti P (2001) Phagocytosis of bacterial pathogens: implications in the host response. Seminars in immunology 13: 381–390. doi: 10.1006/smim.2001.0335
[4]
Vieira O, Botelho R, Grinstein S (2002) Phagosome maturation: aging gracefully. Biochem J 366: 689–704. doi: 10.1042/bj20020691
[5]
Blander JM, Medzhitov R (2004) Regulation of phagosome maturation by signals from toll-like receptors. Science 304: 1014–1018. doi: 10.1126/science.1096158
[6]
Scott C, Botelho R, Grinstein S (2003) Phagosome maturation: a few bugs in the system. The journal of membrane biology 193: 137–152. doi: 10.1007/s00232-002-2008-2
[7]
Duclos S, Desjardins M (2000) Subversion of a young phagosome: the survival strategies of intracellular pathogens. Cellular microbiology 2: 365–377. doi: 10.1046/j.1462-5822.2000.00066.x
[8]
Huynh KK, Eskelinen E-L, Scott CC, Malevanets A, Saftig P, et al. (2007) LAMP proteins are required for fusion of lysosomes with phagosomes. The EMBO journal 26: 313–324. doi: 10.1038/sj.emboj.7601511
[9]
Murray RZ, Kay JG, Sangermani DG, Stow JL (2005) A role for the phagosome in cytokine secretion. Science 310: 1492–1495. doi: 10.1126/science.1120225
[10]
Nishimoto N, Kishimoto T (2004) Inhibition of IL-6 for the treatment of inflammatory diseases. Current opinion in pharmacology 4: 386–391. doi: 10.1016/j.coph.2004.03.005
[11]
Beutler B (1999) The role of tumor necrosis factor in health and disease. The journal of rheumatology. Supplement 57: 16–21.
[12]
Gresham HD, Dale BM, Potter JW, Chang PW, Vines CM, et al. (2000) Negative regulation of phagocytosis in murine macrophages by the Src kinase family member, Fgr. The journal of experimental medicine 191: 515–528. doi: 10.1084/jem.191.3.515
[13]
Uraki R, Sakudo A, Ando S, Kitani H, Onodera T (2010) Enhancement of phagocytotic activity by prion protein in PrP-deficient macrophage cells. International journal of molecular medicine 26: 527–532. doi: 10.3892/ijmm_00000495
[14]
de Almeida CJ, Chiarini LB, da Silva JP, e Silva PM, Martins MA, et al. (2005) The cellular prion protein modulates phagocytosis and inflammatory response. Journal of leukocyte biology 77: 238–246. doi: 10.1189/jlb.1103531
[15]
Ding T, Zhou X, Kouadir M, Shi F, Yang Y, et al. (2013) Cellular prion protein participates in the regulation of inflammatory response and apoptosis in BV2 microglia during infection with Mycobacterium bovis. Journal of molecular neuroscience 51: 1–9. doi: 10.1007/s12031-013-9962-2
[16]
Linden R, Martins VR, Prado MA, Cammarota M, Izquierdo I, et al. (2008) Physiology of the prion protein. Physiological reviews 88: 673–728. doi: 10.1152/physrev.00007.2007
[17]
Pan K-M, Baldwin M, Nguyen J, Gasset M, Serban A, et al. (1993) Conversion of alpha-helices into beta-sheets features in the formation of the scrapie prion proteins. Proceedings of the National Academy of Sciences 90: 10962–10966. doi: 10.1073/pnas.90.23.10962
[18]
Westergard L, Christensen HM, Harris DA (2007) The cellular prion protein (PrPC): Its physiological function and role in disease. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease 1772: 629–644. doi: 10.1016/j.bbadis.2007.02.011
[19]
Chiarini LB, Freitas AR, Zanata SM, Brentani RR, Martins VR, et al. (2002) Cellular prion protein transduces neuroprotective signals. The EMBO journal 21: 3317–3326. doi: 10.1093/emboj/cdf324
[20]
Bremer J, Baumann F, Tiberi C, Wessig C, Fischer H, et al. (2010) Axonal prion protein is required for peripheral myelin maintenance. Nature neuroscience 13: 310–318. doi: 10.1038/nn.2483
[21]
Zafar S, von Ahsen N, Oellerich M, Zerr I, Schulz-Schaeffer WJ, et al. (2011) Proteomics approach to identify the interacting partners of cellular prion protein and characterization of Rab7a interaction in neuronal cells. Journal of proteome research 10: 3123–3135. doi: 10.1021/pr2001989
[22]
Rossi D, Cozzio A, Flechsig E, Klein MA, Rülicke T, et al. (2001) Onset of ataxia and Purkinje cell loss in PrP null mice inversely correlated with Dpl level in brain. The EMBO journal 20: 694–702. doi: 10.1093/emboj/20.4.694
[23]
Marim FM, Silveira TN, Lima Jr DS, Zamboni DS (2010) A method for generation of bone marrow-derived macrophages from cryopreserved mouse bone marrow cells. PLoS One 5: e15263. doi: 10.1371/journal.pone.0015263
[24]
Wong ML, Medrano JF (2005) Real-time PCR for mRNA quantitation. Biotechniques 39: 75–85. doi: 10.2144/05391rv01
[25]
Adams DO, Hamilton TA (1984) The cell biology of macrophage activation. Annual review of immunology 2: 283–318. doi: 10.1146/annurev.iy.02.040184.001435
[26]
Hume DA, Ross IL, Himes SR, Sasmono RT, Wells CA, et al. (2002) The mononuclear phagocyte system revisited. Journal of leukocyte biology 72: 621–627.
[27]
Nguyen MD, Julien J-P, Rivest S (2002) Innate immunity: the missing link in neuroprotection and neurodegeneration? Nature Reviews Neuroscience 3: 216–227. doi: 10.1038/nrn752
[28]
Nimmerjahn A, Kirchhoff F, Helmchen F (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308: 1314–1318. doi: 10.1126/science.1110647
[29]
Colton CA (2009) Heterogeneity of microglial activation in the innate immune response in the brain. Journal of neuroimmune pharmacology 4: 399–418. doi: 10.1007/s11481-009-9164-4
[30]
Shi F, Yang L, Kouadir M, Yang Y, Ding T, et al. (2013) Prion protein participates in the regulation of classical and alternative activation of BV2 microglia. Journal of neurochemistry 124: 168–174. doi: 10.1111/jnc.12053
[31]
Zhou X, Xu G, Zhao D (2008) In vitro effect of prion peptide PrP 106–126 on mouse macrophages: Possible role of macrophages in transport and proliferation for prion protein. Microbial pathogenesis 44: 129–134. doi: 10.1016/j.micpath.2007.08.014
[32]
Watarai M, Kim S, Erdenebaatar J, Makino S, Horiuchi M, et al. (2003) Cellular prion protein promotes Brucella infection into macrophages. The journal of experimental medicine 198: 5–17. doi: 10.1084/jem.20021980
[33]
Nitta K, Sakudo A, Masuyama J, Xue G, Sugiura K, et al. (2009) Role of cellular prion proteins in the function of macrophages and dendritic cells. Protein and peptide letters 16: 239–246. doi: 10.2174/092986609787601705
[34]
Helaine S, Thompson JA, Watson KG, Liu M, Boyle C, et al. (2010) Dynamics of intracellular bacterial replication at the single cell level. Proceedings of the National Academy of Sciences of the United States of America 107: 3746–3751. doi: 10.1073/pnas.1000041107
[35]
Baeuerle PA, Henkel T (1994) Function and activation of NF-kappaB in the immune system. Annual review of immunology 12: 141–179. doi: 10.1146/annurev.iy.12.040194.001041
[36]
Tak PP, Firestein GS (2001) NF-κB: a key role in inflammatory diseases. Journal of clinical investigation 107: 7–11. doi: 10.1172/jci11830
[37]
Pahl HL (1999) Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene 18: 6853–6866. doi: 10.1038/sj.onc.1203239
[38]
Lu Y, Liu A, Zhou X, Kouadir M, Zhao W, et al. (2012) Prion peptide PrP106–126 induces inducible nitric oxide synthase and proinflammatory cytokine gene expression through the activation of NF-κB in macrophage cells. DNA and cell biology 31: 833–838. doi: 10.1089/dna.2011.1362
[39]
Saito F, Kuwata H, Oiki E, Koike M, Uchiyama Y, et al. (2008) Inefficient phagosome maturation in infant macrophages. Biochemical and biophysical research communications 375: 113–118. doi: 10.1016/j.bbrc.2008.07.141
[40]
Bhattacharya M, Ojha N, Solanki S, Mukhopadhyay CK, Madan R, et al. (2006) IL-6 and IL-12 specifically regulate the expression of Rab5 and Rab7 via distinct signaling pathways. The EMBO journal 25: 2878–2888. doi: 10.1038/sj.emboj.7601170
[41]
MacMicking JD, Taylor GA, McKinney JD (2003) Immune control of tuberculosis by IFN-gamma-inducible LRG-47. Science 302: 654–659. doi: 10.1126/science.1088063
[42]
Nuvolone M, Kana V, Hutter G, Sakata D, Mortin-Toth SM, et al. (2013) SIRPα polymorphisms, but not the prion protein, control phagocytosis of apoptotic cells. The journal of experimental medicine 210: 2539–2552. doi: 10.1084/jem.20131274
[43]
Matozaki T, Murata Y, Okazawa H, Ohnishi H (2009) Functions and molecular mechanisms of the CD47–SIRPα signalling pathway. Trends in cell biology 19: 72–80. doi: 10.1016/j.tcb.2008.12.001
[44]
Kinchen JM, Ravichandran KS (2008) Phagocytic signaling: you can touch, but you can’t eat. Current biology 18: R521–R524. doi: 10.1016/j.cub.2008.04.058
[45]
Barclay AN (2009) Signal regulatory protein alpha (SIRPα)/CD47 interaction and function. Current opinion in immunology 21: 47–52. doi: 10.1016/j.coi.2009.01.008
[46]
Braun V, Fraisier V, Raposo G, Hurbain I, Sibarita J-B, et al. (2004) TI-VAMP/VAMP7 is required for optimal phagocytosis of opsonised particles in macrophages. The EMBO journal 23: 4166–4176. doi: 10.1038/sj.emboj.7600427
[47]
Doyle SE, O’Connell RM, Miranda GA, Vaidya SA, Chow EK, et al. (2004) Toll-like receptors induce a phagocytic gene program through p38. The journal of experimental medicine 199: 81–90. doi: 10.1084/jem.20031237
[48]
Vinet AF, Fukuda M, Descoteaux A (2008) The exocytosis regulator synaptotagmin V controls phagocytosis in macrophages. The journal of immunology 181: 5289–5295. doi: 10.4049/jimmunol.181.8.5289
[49]
Duque GA, Fukuda M, Descoteaux A (2013) Synaptotagmin XI regulates phagocytosis and cytokine secretion in macrophages. The journal of immunology 190: 1737–1745. doi: 10.4049/jimmunol.1202500
[50]
Rossi AG, McCutcheon JC, Roy N, Chilvers ER, Haslett C, et al. (1998) Regulation of macrophage phagocytosis of apoptotic cells by cAMP. The journal of immunology 160: 3562–3568.