全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Virio- and Bacterioplankton Microscale Distributions at the Sediment-Water Interface

DOI: 10.1371/journal.pone.0102805

Full-Text   Cite this paper   Add to My Lib

Abstract:

The marine sediment-water interface is an important location for microbially controlled nutrient and gas exchange processes. While microbial distributions on the sediment side of the interface are well established in many locations, the distributions of microbes on the water side of the interface are less well known. Here, we measured that distribution for marine virio- and bacterioplankton with a new two-dimensional technique. Our results revealed higher heterogeneity in sediment-water interface biomass distributions than previously reported with a greater than 45– and 2500-fold change cm?1 found within bacterial and viral subpopulations compared to previous maxima of 1.5- and 1.4-fold cm?1 in bacteria and viruses in the same environments. The 45-fold and 2500-fold changes were due to patches of elevated and patches of reduced viral and bacterial abundance. The bacterial and viral hotspots were found over single and multiple sample points and the two groups often coincided whilst the coldspots only occurred over single sample points and the bacterial and viral abundances showed no correlation. The total mean abundances of viruses strongly correlated with bacteria (r = 0.90, p<0.0001, n = 12) for all three microplates (n = 1350). Spatial autocorrelation analysis via Moran’s I and Geary’s C revealed non-random distributions in bacterial subpopulations and random distributions in viral subpopulations. The variable distributions of viral and bacterial abundance over centimetre-scale distances suggest that competition and the likelihood of viral infection are higher in the small volumes important for individual cell encounters than bulk measurements indicate. We conclude that large scale measurements are not an accurate measurement of the conditions under which microbial dynamics exist. The high variability we report indicates that few microbes experience the ‘average’ concentrations that are frequently measured.

References

[1]  Azam F, Malfatti F (2007) Microbial structuring of marine ecosystems. Nature 5: 782–791. doi: 10.1038/nrmicro1747
[2]  Cotner JB, Biddanda BA (2002) Small players, large Role: microbial influence on biogeochemical processes in pelagic aquatic ecosystems. Ecosystems 5: 105–121. doi: 10.1007/s10021-001-0059-3
[3]  Elser JJ, Stabler BL, Hassett PR (1995) Nutrient limitation of bacterial growth and rates of bacterivory in lakes and oceans: a comparative study. Aquatic Microbial Ecology 9: 105–110. doi: 10.3354/ame009105
[4]  Gasol JM, Del Giorgio PA (2000) Using flow cytometry for counting natural planktonic bacteria and understanding the structure of planktonic bacterial communities. Scientia Marina 64: 197–224. doi: 10.3989/scimar.2000.64n2197
[5]  Pace N (1997) A molecular view of microbial diversity and the biosphere. Science 276: 734–740. doi: 10.1126/science.276.5313.734
[6]  Pontes D, Lima-Bittencourt C, Chartone-Souza E, Nascimento A (2007) Molecular approaches: advantages and artifacts in assessing bacterial diversity. Journal of industrial Microbiology & Biotechnology 34: 463–473. doi: 10.1007/s10295-007-0219-3
[7]  Rodriguez-Brito B, Li L, Wegley L, Furlan M, Angly F, et al. (2010) Viral and microbial community dynamics in four aquatic environments. International Society for Microbial Ecology (ISME) 4: 739–751. doi: 10.1038/ismej.2010.1
[8]  Venter J, Remington K, Heidelberg J, Halpern A, Rusch D, et al. (2004) Environmental genome shotgun sequencing of the Sargasso Sea. Science 304: 66–74. doi: 10.1126/science.1093857
[9]  Azam F (1998) Microbial control of oceanic carbon flux: the plot thickens. Science 280: 694–696. doi: 10.1126/science.280.5364.694
[10]  Long RA, Azam F (2001) Microscale patchiness of bacterioplankton assemblage richness in seawater. Aquatic Microbial Ecology 26: 103–113. doi: 10.3354/ame026103
[11]  Mitchell JG, Okubo A, Fuhrman JA (1985) Microzones surrounding phytoplankton form the basis for a stratified marine microbial ecosystem. Nature 316: 58–59. doi: 10.1038/316058a0
[12]  Seymour JR, Mitchell JG, Seuront L (2004) Microscale heterogeneity in the activity of coastal bacterioplankton communities. Aquatic Microbial Ecology 35: 1–16. doi: 10.3354/ame035001
[13]  Seymour JR, Seuront L, Mitchell JG (2005a) Microscale and small-scale temporal dynamics of a coastal planktonic microbial community. Marine Ecology Progress Series 300: 21–37. doi: 10.3354/meps300021
[14]  Seymour JR, Patten N, Bourne DG, Mitchell JG (2005b) Spatial dynamics of virus-like particles and heterotrophic bacteria within a shallow coral reef system. Marine Ecology Progress Series 288: 1–8. doi: 10.3354/meps288001
[15]  Seymour JR, Seuront L, Doubell M, Waters RL, Mitchell JG (2006) Microscale patchiness of virioplankton. Journal of the Marine Biological Association of the United Kingdom 86: 551–561. doi: 10.1017/s0025315406013464
[16]  Suttle CA (2007) Marine viruses – major players in the global ecosystem. Nature Reviews 5: 801–812. doi: 10.1038/nrmicro1750
[17]  Waters RL, Mitchell JG, Seymour J (2003) Geostatistical characterisation of centimetre-scale spatial structure of in vivo fluorescence. Marine Ecology Progress Series 251: 49–58. doi: 10.3354/meps251049
[18]  Angly FE, Felts B, Breitbart M, Salamon P, Edwards RA, et al. (2006) The marine viromes of four oceanic regions. PLoS Biology 4: 2121–2131. doi: 10.1371/journal.pbio.0040368
[19]  Corinaldesi C, Crevatin E, Del Negro P, Marini M, Russo A, et al. (2003) Large-scale spatial distribution of virioplankton in the Adriatic Sea: testing the trophic state control hypothesis. Applied and Environmental Microbiology 69: 2664–2673. doi: 10.1128/aem.69.5.2664-2673.2003
[20]  Hillmer I, Reenen PV, Imberger J, Zohary T (2008) Phytoplankton patchiness and their role in the modelled productivity of a large, seasonally stratified lake. Ecological Modelling 218: 49–59. doi: 10.1016/j.ecolmodel.2008.06.017
[21]  Liu H, Imai K, Suzuki K, Nojiri Y, Tsurushima N, et al. (2002) Seasonal variability of picophytoplankton and bacteria in the western subarctic Pacific Ocean at station KNOT. Deep Sea Research Part II: Topical Studies in Oceanography 49: 24–25. doi: 10.1016/s0967-0645(02)00199-6
[22]  Pan LA, Zhang LH, Zhang J, Gasol JM, Chao M (2005) On-board flow cytometric observation of picoplankton community structure in the East China Sea during the fall of different years. FEMS Microbiology Ecology 52: 243–253. doi: 10.1016/j.femsec.2004.11.019
[23]  Pan LA, Zhang J, Zhang LH (2007) Picophytoplankton, nanophytoplankton, heterotrophic bacteria and viruses in the Changjiang Estuary and adjacent coastal waters. Journal of Plankton Research 29: 187–197. doi: 10.1093/plankt/fbm006
[24]  Strutton PJ, Mitchell JG, Parslow JS, Greene RM (1997) Phytoplankton patchiness: quantifying the biological contribution using Fast Repetition Rate Fluorometry. Journal of Plankton Research 19: 1265–1274. doi: 10.1093/plankt/19.9.1265
[25]  Curtis TP, Head IM, Lunn M, Woodcock S, Schloss PD, et al. (2006) What is the extent of prokaryotic diversity? Philosophical Transactions of the Royal Society 361: 2023–2037. doi: 10.1098/rstb.2006.1921
[26]  Grunbaum D (2002) Predicting availability to consumers of spatially and temporally variable resources. Hydrobiologia 480: 175–191.
[27]  Karl DM, Dore JE (2001) Microbial ecology at sea: sampling, subsampling and incubation considerations. Methods in Microbiology 30: 13–39. doi: 10.1016/s0580-9517(01)30037-5
[28]  Waters RL, Mitchell JG (2002) Centimetre-scale spatial structure of estuarine in vivo fluorescence profiles. Marine Ecology Progress Series 237: 51–63. doi: 10.3354/meps237051
[29]  Genin A, Greene C, Haury L, Wiebe P, Gal G, et al. (1994) Zooplankton patch dynamics: daily gap formation over abrupt topography. Deep Sea Research Part I: Oceanographic Research Papers 41 (5–6): 941–951. doi: 10.1016/0967-0637(94)90085-x
[30]  Pickett S, Cadenasso M (1995) Landscape ecology: Spatial heterogeneity in ecological systems. Science 269 (5222): 331–334. doi: 10.1126/science.269.5222.331
[31]  Levin S, Whitfield M (1994) Patchiness in marine and terrestrial systems: from individuals to populations. Phil. Trans R. Soc 343 (1303): 99–103. doi: 10.1098/rstb.1994.0013
[32]  Grünbaum D (2012) The logic of ecological patchiness. Interface Focus 2: 150–155. doi: 10.1098/rsfs.2011.0084
[33]  Brentnall SJ, Richards KJ, Brindley J, Murphy E (2003) Plankton patchiness and its effect on larger-scale productivity. Journal of Plankton Research 25: 121–140. doi: 10.1093/plankt/25.2.121
[34]  Seymour JR, Mitchell JG, Pearson L, Waters R (2000) Heterogeneity in bacterioplankton abundance from 4.5 millimetre resolution sampling. Aquatic Microbial Ecology 22: 143–153. doi: 10.3354/ame022143
[35]  Seymour JR, Seuront L, Mitchell JG (2007b) Microscale gradients of planktonic microbial communities above the sediment surface in a mangrove estuary. Estuarine, Coastal and Shelf Sciences 73: 651–666. doi: 10.1016/j.ecss.2007.03.004
[36]  Mitchell JG (2002) The energetic and scaling of search strategies in bacteria. American Naturalist 160: 727–740. doi: 10.1086/343874
[37]  Barbara G, Mitchell JG (2003) Marine bacterial organisation around point-like sources of amino acids FEMS Microbiology Ecology. 43: 99–109. doi: 10.1111/j.1574-6941.2003.tb01049.x
[38]  Blackburn N, Fenchel T, Mitchell JG (1998) Microscale nutrient patches in planktonic habitats shown by chemotactic bacteria. Science 282: 2254–2256. doi: 10.1126/science.282.5397.2254
[39]  Seymour JR, Ahmed T, Durham WM, Stocker R (2010) Chemotactic response of marine bacteria to the extracellular products of Synechococcus and Prochlorococcus. Aquatic Microbial Ecology 59: 161–168. doi: 10.3354/ame01400
[40]  Stocker R, Seymour JR, Samadani A, Hunt DE, Polz MF (2008) Rapid chemotactic response enables marine bacteria to exploit ephemeral microscale nutrient patches. Proceedings of the National Academy of Sciences of the United States of America (PNAS) 105: 4209–4214. doi: 10.1073/pnas.0709765105
[41]  Stocker R (2012) Marine microbes see a sea of gradients. Science Review 338: 628–633. doi: 10.1126/science.1208929
[42]  Taylor JR, Stocker R (2012) Trade-offs of chemotactic foraging in turbulent water. Science 338: 675–679. doi: 10.1126/science.1219417
[43]  Seymour JR, Seuront L, Doubell M, Mitchell JG (2008) Mesoscale and microscale spatial variability of bacteria and viruses during a Phaeocystisglobosa bloom in the Eastern English Channel. Estuarine, Coastal and Shelf Science 80: 589–597. doi: 10.1016/j.ecss.2008.09.011
[44]  Seymour JR, Humphreys WF, Mitchell JG (2007a) Stratification of the microbial community inhabiting an anchialine sinkhole. Aquatic Microbial Ecology 50: 11–24. doi: 10.3354/ame01153
[45]  Seuront L, Lacheze C, Doubell MJ, Seymour JR, Van Dongen-Vogels V, et al. (2007) The influence of Phaeocystisglobosa on microscale spatial patterns of chlorophyll a and bulk-phase seawater viscosity, Biogeochemistry. 83: 173–188. doi: 10.1007/s10533-007-9097-z
[46]  Barbara G, Mitchell JG (1996) Microlaminations of motile bacteria in microbial mats. Applied and Environmental Microbiology 62: 3985–3990.
[47]  Brussaard C (2004) Optimisation of procedures for counting viruses by flow cytometry. Applied and Environmental Microbiology 70: 1506–1513. doi: 10.1128/aem.70.3.1506-1513.2004
[48]  Marie D, Brussaard C, Thyrhaug R, Bratbak G, Vauolt D (1999) Enumeration of marine viruses in culture and natural samples by flow cytometry. Applied and Environmental Microbiology 65: 45–52.
[49]  Brussaard C, Marie D, Bratbak G (2000) Flow cytometric detection of viruses. Journal of Virological Methods 85 (1–2): 175–182. doi: 10.1016/s0166-0934(99)00167-6
[50]  Schapira M, Buscot MJ, Leterme SC, Pollet T, Chapperon C, et al. (2009) Distribution of heterotrophic bacteria and virus-like particles along a salinity gradient in a hypersaline coastal lagoon. Aquatic Microbial Ecology 54: 171–183. doi: 10.3354/ame01262
[51]  Marie D, Partensky F, Jacquet S, Vaulot D (1997) Enumeration and cell cycle analysis of natural populations of marine picoplankton by flow cytometry using the nucleic acid stain SYBR Green I. Applied and Environmental Microbiology. 63: 186–193.
[52]  Wiebe PH (1970) Small-scale spatial distribution in oceanic zooplankton. American Society of Limnology and Oceanography 15: 205–217. doi: 10.4319/lo.1970.15.2.0205
[53]  Holm S (1979) A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics 6: 65–70.
[54]  Moran PAP (1950) Notes on continuous stochastic phenomena. Biometrika 37: 17–23. doi: 10.1093/biomet/37.1-2.17
[55]  Rossi RE, Mulla DJ, Journel AG, Franz EH (1992) Geostatistical tools for modelling and interpreting ecological spatial dependence. Ecological Monographs 62: 277–314. doi: 10.2307/2937096
[56]  Geary RC (1954) The contiguity ratio and statistical mapping. The Incorporated Statistician 5: 115–145. doi: 10.2307/2986645
[57]  Sokal RR (1978) Spatial autocorrelation in biology: 1. Methodology. Biological Journal of the Linnean Society 10: 199–228. doi: 10.1111/j.1095-8312.1978.tb00013.x
[58]  Griffith DA (1987) Spatial autocorrelation: a primer. Resource publications in Geography. Association of American Geographers, Washington, D.C.
[59]  Baric A, Kuspilic G, Matijevic S (2002) Nutrient (N, P, Si) fluxes between marine sediments and water column in coastal and open Adriatic. Hydrobiologia 475/476: 151–159. doi: 10.1007/978-94-017-2464-7_12
[60]  Weinbauer MG, Suttle CA (1999) Lysogeny and prophage induction in coastal and offshore bacterial communities. Aquatic Microbial Ecology 18: 217–225. doi: 10.3354/ame018217
[61]  Mitchell JG (2004) Rank-size analysis and vertical phytoplankton distribution patterns. In: Handbook of Scaling Methods in Aquatic Ecology: Measurement, Analysis, Simulation (L. Seuront, P.G. Strutton eds) CRC, Boca Raton, 257–278.
[62]  Wang Y, Hammes F, Boon N, Chami M, Egli T (2009) Isolation and characterisation of low nucleic acid (LNA)-content bacteria. The ISME Journal 3: 889–902. doi: 10.1038/ismej.2009.46
[63]  Bouvy M, Troussellier M, Got P, Arfi R (2004) Bacterioplankton responses to bottom-up and top-down controls in a West African reservoir (Selingue, Mali). Aquatic Microbial Ecology 34: 301–307. doi: 10.3354/ame034301
[64]  Gasol JM, Zweifel UL, Peters F, Fuhrman JA, Hagstrom A (1999) Significance of size and nucleic acid content heterogeneity as measured by flow cytometry in natural planktonic bacteria. Applied and Environmental Microbiology 65: 4475–4483.
[65]  Lebaron P, Servais P, Agogue H, Courties C, Joux F (2001) Does the high nucleic acid content of individual bacterial cells allow us to discriminate between active cells and inactive cells in aquatic systems. Applied and Environmental Microbiology 67: 1775–1782. doi: 10.1128/aem.67.4.1775-1782.2001
[66]  Lebaron P, Servais P, Baudoux A, Bourrain M, Courties C, et al. (2002) Variations of bacterial-specific activity with cell size and nucleic acid content assessed by flow cytometry. Aquatic Microbial Ecology 28: 131–140. doi: 10.3354/ame028131
[67]  Bergh O, Borsheim KY, Bratbak G, Heldal M (1989) High abundance of viruses found in aquatic environments. Nature 340: 467–468. doi: 10.1038/340467a0
[68]  Thar R, Kühl M (2003) Bacteria are not too small for spatial sensing of chemical gradients: An experimental evidence. Proceedings of the National Academy of Sciences of the United States of America (PNAS) 100: 5748–5753. doi: 10.1073/pnas.1030795100
[69]  Boegman L, Ivey GN (2009) Flow separation and resuspension beneath shoaling nonlinear internal waves. Journal of Geophysical Research. 114: 1–15. doi: 10.1029/2007jc004411
[70]  Braaten DA, Paw KT, Shaw RH (1990) Particle resuspension in a turbulent boundary layer – observed and modelled. Journal of Aerosol Science 21: 613–628. doi: 10.1016/0021-8502(90)90117-g
[71]  Nicholson KW (1988) A review of particle resuspension. Atmospheric Environment 22: 2639–2651. doi: 10.1016/0004-6981(88)90433-7
[72]  Kester W (2009) What the Nyquist criterion means to your sampled data system design. Analog Devices 1–12.
[73]  Rutgers van der Loeff MM, Meyer R, Rudels B, Rachor E (2002) Resuspension and particle transport in the benthic nepheloid layer in and near Fram Strait in relation to faunal abundances and Th depletion. Deep-Sea Research 49: 1941–1958. doi: 10.1016/s0967-0637(02)00113-9
[74]  Sandilands RG, Mudroch A (1983) Nepheloid layer in Lake Ontario. Journal of Great Lakes Research 9: 190–200. doi: 10.1016/s0380-1330(83)71888-5
[75]  Alonso MC, Jimenez-Gomez F, Rodriguez J, Borrego JJ (2001) Distribution of virus-like particles in an oligotrophic marine environment (Alboran Sea, Western Mediterranean). Microbial Ecology 42: 407–415. doi: 10.1007/s00248-001-0015-y
[76]  Drake LA, Choi KH, Haskell AGE, Dobbs FC (1998) Vertical profiles of virus-like particles and bacteria in the water column and sediments of Chesapeake Bay, USA. Aquatic Microbial Ecology 16: 17–25. doi: 10.3354/ame016017
[77]  Thomson PG, Davidson AT, Enden R, Pearce I, Seuront L, et al. (2010) Distribution and abundance of marine microbes in the Southern Ocean between 30 and 80°E. Deep-Sea Research II 57: 815–827. doi: 10.1016/j.dsr2.2008.10.040

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133