[1] | Junqueira LCU, Kelley RO (1998) Basic histology. Stamford, Conn.: Appleton & Lange.
|
[2] | Macarthur BD, Ma'ayan A, Lemischka IR (2009) Systems biology of stem cell fate and cellular reprogramming. Nat Rev Mol Cell Biol 10: 672–681 doi:10.1038/nrm2766.
|
[3] | Waddington CH (1957) The strategy of the genes; a discussion of some aspects of theoretical biology. London: Allen & Unwin. ix, 262 p. p.
|
[4] | Kauffman SA (1969) Metabolic stability and epigenesis in randomly constructed genetic nets. J Theor Biol 22: 437–467. doi: 10.1016/0022-5193(69)90015-0
|
[5] | Huang S, Eichler G, Bar-Yam Y, Ingber DE (2005) Cell fates as high-dimensional attractor states of a complex gene regulatory network. Phys Rev Lett 94: 128701. doi: 10.1103/physrevlett.94.128701
|
[6] | Manu, Surkova S, Spirov AV, Gursky VV, Janssens H, et al. (2009) Canalization of gene expression and domain shifts in the Drosophila blastoderm by dynamical attractors. PLoS Comput Biol 5: e1000303 doi:10.1371/journal.pcbi.1000303.
|
[7] | Acar M, Becskei A, van Oudenaarden A (2005) Enhancement of cellular memory by reducing stochastic transitions. Nature 435: 228–232. doi: 10.1038/nature03524
|
[8] | Gardner TS, Cantor CR, Collins JJ (2000) Construction of a genetic toggle switch in Escherichia coli. Nature 403: 339–342.
|
[9] | Becskei A, Séraphin B, Serrano L (2001) Positive feedback in eukaryotic gene networks: cell differentiation by graded to binary response conversion. EMBO J 20: 2528–2535 doi:10.1093/emboj/20.10.2528.
|
[10] | Isaacs FJ, Hasty J, Cantor CR, Collins JJ (2003) Prediction and measurement of an autoregulatory genetic module. Proc Natl Acad Sci U A 100: 7714–7719 doi:10.1073/pnas.1332628100.
|
[11] | Ellis T, Wang X, Collins JJ (2009) Diversity-based, model-guided construction of synthetic gene networks with predicted functions. Nat Biotechnol 27: 465–471 doi:10.1038/nbt.1536.
|
[12] | Wu M, Su R-Q, Li X, Ellis T, Lai Y-C, et al. (2013) Engineering of regulated stochastic cell fate determination. Proc Natl Acad Sci 110: 10610–10615 doi:10.1073/pnas.1305423110.
|
[13] | Huang D, Holtz WJ, Maharbiz MM (2012) A genetic bistable switch utilizing nonlinear protein degradation. J Biol Eng 6: 9 doi:10.1186/1754-1611-6-9.
|
[14] | Xiong W, Ferrell JE (2003) A positive-feedback-based bistable “memory module” that governs a cell fate decision. Nature 426: 460–465. doi: 10.1038/nature02089
|
[15] | Shiraishi T, Matsuyama S, Kitano H (2010) Large-Scale Analysis of Network Bistability for Human Cancers. PLoS Comput Biol 6: e1000851 doi:10.1371/journal.pcbi.1000851.
|
[16] | Huang S, Guo YP, May G, Enver T (2007) Bifurcation dynamics in lineage-commitment in bipotent progenitor cells. Dev Biol 305: 695–713. doi: 10.1016/j.ydbio.2007.02.036
|
[17] | Park IH, Zhao R, West JA, Yabuuchi A, Huo H, et al. (2008) Reprogramming of human somatic cells to pluripotency with defined factors. Nature 451: 141–146 doi:10.1038/nature06534.
|
[18] | Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126: 663–676 doi:10.1016/j.cell.2006.07.024.
|
[19] | Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, et al. (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131: 861–872 doi:10.1016/j.cell.2007.11.019.
|
[20] | Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, et al. (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318: 1917–1920 doi:10.1126/science.1151526.
|
[21] | Boyer LA, Lee TI, Cole MF, Johnstone SE, Levine SS, et al. (2005) Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122: 947–956 doi:10.1016/j.cell.2005.08.020.
|
[22] | Kim J, Chu J, Shen X, Wang J, Orkin SH (2008) An Extended Transcriptional Network for Pluripotency of Embryonic Stem Cells. Cell 132: 1049–1061 doi:10.1016/j.cell.2008.02.039.
|
[23] | Kalmar T, Lim C, Hayward P, Munoz-Descalzo S, Nichols J, et al. (2009) Regulated fluctuations in nanog expression mediate cell fate decisions in embryonic stem cells. PLoS Biol 7: e1000149. doi: 10.1371/journal.pbio.1000149
|
[24] | Chambers I, Silva J, Colby D, Nichols J, Nijmeijer B, et al. (2007) Nanog safeguards pluripotency and mediates germline development. Nature 450: 1230–1234 doi:10.1038/nature06403.
|
[25] | Graf T, Stadtfeld M (2008) Heterogeneity of embryonic and adult stem cells. Cell Stem Cell 3: 480–483 doi:10.1016/j.stem.2008.10.007.
|
[26] | Canham MA, Sharov AA, Ko MSH, Brickman JM (2010) Functional heterogeneity of embryonic stem cells revealed through translational amplification of an early endodermal transcript. PLoS Biol 8: e1000379 doi:10.1371/journal.pbio.1000379.
|
[27] | Chan EM, Ratanasirintrawoot S, Park IH, Manos PD, Loh YH, et al. (2009) Live cell imaging distinguishes bona fide human iPS cells from partially reprogrammed cells. Nat Biotechnol 27: 1033–1037 doi:10.1038/nbt.1580.
|
[28] | Hayashi K, Lopes SM, Tang F, Surani MA (2008) Dynamic equilibrium and heterogeneity of mouse pluripotent stem cells with distinct functional and epigenetic states. Cell Stem Cell 3: 391–401 doi:10.1016/j.stem.2008.07.027.
|
[29] | MacArthur BD, Sevilla A, Lenz M, Müller F-J, Schuldt BM, et al. (2012) Nanog-dependent feedback loops regulate murine embryonic stem cell heterogeneity. Nat Cell Biol 14: 1139–1147 doi:10.1038/ncb2603.
|
[30] | Macfarlan TS, Gifford WD, Driscoll S, Lettieri K, Rowe HM, et al. (2012) Embryonic stem cell potency fluctuates with endogenous retrovirus activity. Nature 487: 57–63 doi:10.1038/nature11244.
|
[31] | Silva J, Smith A (2008) Capturing pluripotency. Cell 132: 532–536 doi:10.1016/j.cell.2008.02.006.
|
[32] | Toyooka Y, Shimosato D, Murakami K, Takahashi K, Niwa H (2008) Identification and characterization of subpopulations in undifferentiated ES cell culture. Dev Camb Engl 135: 909–918 doi:10.1242/dev.017400.
|
[33] | Trott J, Hayashi K, Surani A, Babu MM, Martinez-Arias A (2012) Dissecting ensemble networks in ES cell populations reveals micro-heterogeneity underlying pluripotency. Mol Biosyst 8: 744–752 doi:10.1039/c1mb05398a.
|
[34] | Hanna J, Saha K, Pando B, van Zon J, Lengner CJ, et al. (2009) Direct cell reprogramming is a stochastic process amenable to acceleration. Nature 462: 595–601 doi:10.1038/nature08592.
|
[35] | Yamanaka S (2009) Elite and stochastic models for induced pluripotent stem cell generation. Nature 460: 49–52 doi:10.1038/nature08180.
|
[36] | Brock A, Chang H, Huang S (2009) Non-genetic heterogeneity—a mutation-independent driving force for the somatic evolution of tumours. Nat Rev Genet 10: 336–342 doi:10.1038/nrg2556.
|
[37] | Huang S (2012) Tumor progression: chance and necessity in Darwinian and Lamarckian somatic (mutationless) evolution. Prog Biophys Mol Biol 110: 69–86 doi:10.1016/j.pbiomolbio.2012.05.001.
|
[38] | Ma W, Trusina A, El-Samad H, Lim WA, Tang C (2009) Defining Network Topologies that Can Achieve Biochemical Adaptation. Cell 138: 760–773 doi:10.1016/j.cell.2009.06.013.
|
[39] | Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, et al. (2002) Network motifs: simple building blocks of complex networks. Science 298: 824–827 doi:10.1126/science.298.5594.824.
|
[40] | Shu J, Wu C, Wu Y, Li Z, Shao S, et al. (2013) Induction of pluripotency in mouse somatic cells with lineage specifiers. Cell 153: 963–975 doi:10.1016/j.cell.2013.05.001.
|
[41] | Chambers I, Smith A (2004) Self-renewal of teratocarcinoma and embryonic stem cells. Oncogene 23: 7150–7160 doi:10.1038/sj.onc.1207930.
|
[42] | Graf T, Enver T (2009) Forcing cells to change lineages. Nature 462: 587–594 doi:10.1038/nature08533.
|
[43] | Niwa H (2007) How is pluripotency determined and maintained? Development 134: 635–646 doi:10.1242/dev.02787.
|
[44] | Gupta PB, Fillmore CM, Jiang G, Shapira SD, Tao K, et al. (2011) Stochastic State Transitions Give Rise to Phenotypic Equilibrium in Populations of Cancer Cells. Cell 146: 633–644 doi:10.1016/j.cell.2011.07.026.
|
[45] | Eldar A, Elowitz MB (2010) Functional roles for noise in genetic circuits. Nature 467: 167–173 doi:10.1038/nature09326.
|
[46] | Laslo P, Spooner CJ, Warmflash A, Lancki DW, Lee H-J, et al. (2006) Multilineage Transcriptional Priming and Determination of Alternate Hematopoietic Cell Fates. Cell 126: 755–766 doi:10.1016/j.cell.2006.06.052.
|
[47] | Kaufman M, Soule C, Thomas R (2007) A new necessary condition on interaction graphs for multistationarity. J Theor Biol 248: 675–685 doi:10.1016/j.jtbi.2007.06.016.
|
[48] | Hasty J, Pradines J, Dolnik M, Collins JJ (2000) Noise-based switches and amplifiers for gene expression. Proc Natl Acad Sci U A 97: 2075–2080. doi: 10.1073/pnas.040411297
|
[49] | Palani S, Sarkar CA (2012) Transient noise amplification and gene expression synchronization in a bistable mammalian cell-fate switch. Cell Rep 1: 215–224 doi:10.1016/j.celrep.2012.01.007.
|
[50] | Suzuki H, Forrest ARR, van Nimwegen E, Daub CO, Balwierz PJ, et al. (2009) The transcriptional network that controls growth arrest and differentiation in a human myeloid leukemia cell line. Nat Genet 41: 553–562 doi:10.1038/ng.375.
|
[51] | Kueh HY, Champhekhar A, Nutt SL, Elowitz MB, Rothenberg EV (2013) Positive Feedback Between PU.1 and the Cell Cycle Controls Myeloid Differentiation. Science 341: 670–673 doi:10.1126/science.1240831.
|
[52] | Young RA (2011) Control of the Embryonic Stem Cell State. Cell 144: 940–954 doi:10.1016/j.cell.2011.01.032.
|
[53] | Ermentrout B (2002) Simulating, analyzing, and animating dynamical systems: a guide to XPPAUT for researchers and students. Philadelphia: Society for Industrial and Applied Mathematics. xiv, 290 p. p. .
|
[54] | Strogatz SH (1994) Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering. .Reading, Mass: Addison-Wesley Pub. xi, 498 p.
|
[55] | Chen KC, Calzone L, Csikasz-Nagy A, Cross FR, Novak B, et al. (2004) Integrative analysis of cell cycle control in budding yeast. Mol Biol Cell 15: 3841–3862. doi: 10.1091/mbc.e03-11-0794
|
[56] | Blake WJ, K?rn M, Cantor CR, Collins JJ (2003) Noise in eukaryotic gene expression. Nature 422: 633–637. doi: 10.1038/nature01546
|
[57] | Blake WJ, Balazsi G, Kohanski MA, Isaacs FJ, Murphy KF, et al. (2006) Phenotypic consequences of promoter-mediated transcriptional noise. Mol Cell 24: 853–865. doi: 10.1016/j.molcel.2006.11.003
|
[58] | Elowitz MB, Levine AJ, Siggia ED, Swain PS (2002) Stochastic gene expression in a single cell. Science 297: 1183–1186. doi: 10.1126/science.1070919
|
[59] | Guido NJ, Wang X, Adalsteinsson D, McMillen D, Hasty J, et al. (2006) A bottom-up approach to gene regulation. Nature 439: 856–860 doi:10.1038/nature04473.
|
[60] | Raser JM, O'Shea EK (2004) Control of stochasticity in eukaryotic gene expression. Science 304: 1811–1814. doi: 10.1126/science.1098641
|
[61] | Suel GM, Garcia-Ojalvo J, Liberman LM, Elowitz MB (2006) An excitable gene regulatory circuit induces transient cellular differentiation. Nature 440: 545–550. doi: 10.1038/nature04588
|
[62] | Thattai M, van Oudenaarden A (2001) Intrinsic noise in gene regulatory networks. Proc Natl Acad Sci U A 98: 8614–8619. doi: 10.1073/pnas.151588598
|
[63] | Bell ML, Earl JB, Britt SG (2007) Two types of Drosophila R7 photoreceptor cells are arranged randomly: a model for stochastic cell-fate determination. J Comp Neurol 502: 75–85. doi: 10.1002/cne.21298
|
[64] | Chickarmane V, Enver T, Peterson C (2009) Computational modeling of the hematopoietic erythroid-myeloid switch reveals insights into cooperativity, priming, and irreversibility. PLoS Comput Biol 5: e1000268. doi: 10.1371/journal.pcbi.1000268
|
[65] | Chuang CF, Vanhoven MK, Fetter RD, Verselis VK, Bargmann CI (2007) An innexin-dependent cell network establishes left-right neuronal asymmetry in C. elegans. Cell 129: 787–799 doi:10.1016/j.cell.2007.02.052.
|
[66] | Raj A, Rifkin SA, Andersen E, van Oudenaarden A (2010) Variability in gene expression underlies incomplete penetrance. Nature 463: 913–918 doi:10.1038/nature08781.
|
[67] | Yao G, Lee TJ, Mori S, Nevins JR, You L (2008) A bistable Rb-E2F switch underlies the restriction point. Nat Cell Biol 10: 476–482. doi: 10.1038/ncb1711
|
[68] | Adalsteinsson D, McMillen D, Elston TC (2004) Biochemical Network Stochastic Simulator (BioNetS): software for stochastic modeling of biochemical networks. BMC Bioinformatics 5: 24.
|
[69] | Akashi K, He X, Chen J, Iwasaki H, Niu C, et al. (2003) Transcriptional accessibility for genes of multiple tissues and hematopoietic lineages is hierarchically controlled during early hematopoiesis. Blood 101: 383–389 doi:10.1182/blood-2002-06-1780.
|
[70] | Cross MA, Enver T (1997) The lineage commitment of haemopoietic progenitor cells. Curr Opin Genet Dev 7: 609–613. doi: 10.1016/s0959-437x(97)80007-x
|
[71] | Hu M, Krause D, Greaves M, Sharkis S, Dexter M, et al. (1997) Multilineage gene expression precedes commitment in the hemopoietic system. Genes Dev 11: 774–785. doi: 10.1101/gad.11.6.774
|
[72] | Kim CFB, Jackson EL, Woolfenden AE, Lawrence S, Babar I, et al. (2005) Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell 121: 823–835 doi:10.1016/j.cell.2005.03.032.
|
[73] | Miyamoto T, Iwasaki H, Reizis B, Ye M, Graf T, et al. (2002) Myeloid or lymphoid promiscuity as a critical step in hematopoietic lineage commitment. Dev Cell 3: 137–147. doi: 10.1016/s1534-5807(02)00201-0
|
[74] | Gradshteyn IS, Ryzhik IM, Jeffrey A (2000) Table of integrals, series, and products. 6th ed.San Diego: Academic Press. xlvii, 1163 p. p. Available: http://www.loc.gov/catdir/description/el?s031/00104373.html http://www.loc.gov/catdir/toc/els031/001?04373.html.
|
[75] | Zhou JX, Aliyu MDS, Aurell E, Huang S (2012) Quasi-potential landscape in complex multi-stable systems. J R Soc Interface: rsif20120434. doi:10.1098/rsif.2012.0434.
|
[76] | MacArthur BD, Lemischka IR (2013) Statistical Mechanics of Pluripotency. Cell 154: 484–489 doi:10.1016/j.cell.2013.07.024.
|
[77] | Vierbuchen T, Ostermeier A, Pang ZP, Kokubu Y, Sudhof TC, et al. (2010) Direct conversion of fibroblasts to functional neurons by defined factors. Nature 463: 1035–1041 doi:10.1038/nature08797.
|
[78] | Nakagawa T, Sharma M, Nabeshima Y, Braun RE, Yoshida S (2010) Functional hierarchy and reversibility within the murine spermatogenic stem cell compartment. Science 328: 62–67 doi:10.1126/science.1182868.
|
[79] | Loh YH, Wu Q, Chew JL, Vega VB, Zhang W, et al. (2006) The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat Genet 38: 431–440 doi:10.1038/ng1760.
|
[80] | Fidalgo M, Faiola F, Pereira C-F, Ding J, Saunders A, et al. (2012) Zfp281 mediates Nanog autorepression through recruitment of the NuRD complex and inhibits somatic cell reprogramming. Proc Natl Acad Sci U S A 109: 16202–16207 doi:10.1073/pnas.1208533109.
|
[81] | Navarro P, Festuccia N, Colby D, Gagliardi A, Mullin NP, et al. (2012) OCT4/SOX2-independent Nanog autorepression modulates heterogeneous Nanog gene expression in mouse ES cells. EMBO J 31: 4547–4562 doi:10.1038/emboj.2012.321.
|
[82] | Niwa H, Miyazaki J, Smith AG (2000) Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat Genet 24: 372–376 doi:10.1038/74199.
|
[83] | Radzisheuskaya A, Chia GLB, dos Santos RL, Theunissen TW, Castro LFC, et al. (2013) A defined Oct4 level governs cell state transitions of pluripotency entry and differentiation into all embryonic lineages. Nat Cell Biol 15: 579–590 doi:10.1038/ncb2742.
|
[84] | Karwacki-Neisius V, G?ke J, Osorno R, Halbritter F, Ng JH, et al. (2013) Reduced Oct4 Expression Directs a Robust Pluripotent State with Distinct Signaling Activity and Increased Enhancer Occupancy by Oct4 and Nanog. Cell Stem Cell 12: 531–545 doi:10.1016/j.stem.2013.04.023.
|
[85] | Wang J, Levasseur DN, Orkin SH (2008) Requirement of Nanog dimerization for stem cell self-renewal and pluripotency. Proc Natl Acad Sci U A 105: 6326–6331 doi:10.1073/pnas.0802288105.
|
[86] | Chew J-L, Loh Y-H, Zhang W, Chen X, Tam W-L, et al. (2005) Reciprocal transcriptional regulation of Pou5f1 and Sox2 via the Oct4/Sox2 complex in embryonic stem cells. Mol Cell Biol 25: 6031–6046 doi:10.1128/MCB.25.14.6031-6046.2005.
|
[87] | Chickarmane V, Troein C, Nuber UA, Sauro HM, Peterson C (2006) Transcriptional Dynamics of the Embryonic Stem Cell Switch. PLoS Comput Biol 2: e123 doi:10.1371/journal.pcbi.0020123.
|
[88] | Aksoy I, Jauch R, Chen J, Dyla M, Divakar U, et al. (2013) Oct4 switches partnering from Sox2 to Sox17 to reinterpret the enhancer code and specify endoderm. EMBO J 32: 938–953 doi:10.1038/emboj.2013.31.
|
[89] | Faddah DA, Wang H, Cheng AW, Katz Y, Buganim Y, et al. (2013) Single-Cell Analysis Reveals that Expression of Nanog Is Biallelic and Equally Variable as that of Other Pluripotency Factors in Mouse ESCs. Cell Stem Cell 13: 23–29 doi:10.1016/j.stem.2013.04.019.
|
[90] | Filipczyk A, Gkatzis K, Fu J, Hoppe PS, Lickert H, et al. (2013) Biallelic Expression of Nanog Protein in Mouse Embryonic Stem Cells. Cell Stem Cell 13: 12–13 doi:10.1016/j.stem.2013.04.025.
|
[91] | Miyanari Y, Torres-Padilla M-E (2012) Control of ground-state pluripotency by allelic regulation of Nanog. Nature 483: 470–473 doi:10.1038/nature10807.
|
[92] | Smith A (2013) Nanog Heterogeneity: Tilting at Windmills? Cell Stem Cell 13: 6–7 doi:10.1016/j.stem.2013.06.016.
|
[93] | Adewumi O, Aflatoonian B, Ahrlund-Richter L, Amit M, Andrews PW, et al. (2007) Characterization of human embryonic stem cell lines by the International Stem Cell Initiative. Nat Biotechnol 25: 803–816 doi:10.1038/nbt1318.
|
[94] | Murphy KF, Adams RM, Wang X, Balázsi G, Collins JJ (2010) Tuning and controlling gene expression noise in synthetic gene networks. Nucleic Acids Res 38: 2712–2726 doi:10.1093/nar/gkq091.
|
[95] | Zhao H, Li Y, Jin H, Xie L, Liu C, et al. (2010) Rapid and efficient reprogramming of human amnion-derived cells into pluripotency by three factors OCT4/SOX2/NANOG. Differ Res Biol Divers 80: 123–129 doi:10.1016/j.diff.2010.03.002.
|
[96] | Jaenisch R, Young R (2008) Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming. Cell 132: 567–582 doi:10.1016/j.cell.2008.01.015.
|
[97] | Kulkarni VG (1995) Modeling and analysis of stochastic systems. New York: Chapman & Hall. Available: http://www.loc.gov/catdir/enhancements/f?y0744/95015182-d.html.
|
[98] | Grácio F, Cabral J, Tidor B (2013) Modeling Stem Cell Induction Processes. PLoS ONE 8: e60240 doi:10.1371/journal.pone.0060240.
|
[99] | Pimanda JE, Ottersbach K, Knezevic K, Kinston S, Chan WYI, et al. (2007) Gata2, Fli1, and Scl form a recursively wired gene-regulatory circuit during early hematopoietic development. Proc Natl Acad Sci U S A 104: 17692–17697 doi:10.1073/pnas.0707045104.
|
[100] | Kyba M, Daley GQ (2003) Hematopoiesis from embryonic stem cells: lessons from and for ontogeny. Exp Hematol 31: 994–1006. doi: 10.1016/s0301-472x(03)00261-3
|
[101] | Kim S, Kim Y, Lee J, Chung J (2010) Regulation of FOXO1 by TAK1-Nemo-like kinase pathway. J Biol Chem 285: 8122–8129 doi:10.1074/jbc.M110.101824.
|
[102] | Pourcet B, Pineda-Torra I, Derudas B, Staels B, Glineur C (2010) SUMOylation of human peroxisome proliferator-activated receptor alpha inhibits its trans-activity through the recruitment of the nuclear corepressor NCoR. J Biol Chem 285: 5983–5992 doi:10.1074/jbc.M109.078311.
|
[103] | Wei F, Scholer HR, Atchison ML (2007) Sumoylation of Oct4 enhances its stability, DNA binding, and transactivation. J Biol Chem 282: 21551–21560 doi:10.1074/jbc.M611041200.
|
[104] | Shalek AK, Satija R, Adiconis X, Gertner RS, Gaublomme JT, et al. (2013) Single-cell transcriptomics reveals bimodality in expression and splicing in immune cells. Nature 498: 236–240 doi:10.1038/nature12172.
|
[105] | Lu T, Ferry M, Weiss R, Hasty J (2008) A molecular noise generator. Phys Biol 5: 036006 doi:10.1088/1478-3975/5/3/036006.
|
[106] | Gabut M, Samavarchi-Tehrani P, Wang X, Slobodeniuc V, O'Hanlon D, et al. (2011) An Alternative Splicing Switch Regulates Embryonic Stem Cell Pluripotency and Reprogramming. Cell 147: 132–146 doi:10.1016/j.cell.2011.08.023.
|
[107] | Lu Y, Loh Y-H, Li H, Cesana M, Ficarro SB, et al.. (2014) Alternative Splicing of MBD2 Supports Self-Renewal in Human Pluripotent Stem Cells. Cell Stem Cell. doi:10.1016/j.stem.2014.04.002.
|
[108] | Deans TL, Cantor CR, Collins JJ (2007) A tunable genetic switch based on RNAi and repressor proteins for regulating gene expression in mammalian cells. Cell 130: 363–372. doi: 10.1016/j.cell.2007.05.045
|
[109] | Khalil AS, Collins JJ (2010) Synthetic biology: applications come of age. Nat Rev Genet 11: 367–379 doi:10.1038/nrg2775.
|
[110] | Lu TK, Khalil AS, Collins JJ (2009) Next-generation synthetic gene networks. Nat Biotechnol 27: 1139–1150 doi:10.1038/nbt.1591.
|
[111] | Stricker J, Cookson S, Bennett MR, Mather WH, Tsimring LS, et al. (2008) A fast, robust and tunable synthetic gene oscillator. Nature 456: 516–519 doi:10.1038/nature07389.
|
[112] | Tigges M, Marquez-Lago TT, Stelling J, Fussenegger M (2009) A tunable synthetic mammalian oscillator. Nature 457: 309–312. doi: 10.1038/nature07616
|
[113] | Lu R, Markowetz F, Unwin RD, Leek JT, Airoldi EM, et al. (2009) Systems-level dynamic analyses of fate change in murine embryonic stem cells. Nature 462: 358–362 doi:10.1038/nature08575.
|
[114] | Glauche I, Herberg M, Roeder I (2010) Nanog Variability and Pluripotency Regulation of Embryonic Stem Cells - Insights from a Mathematical Model Analysis. PLoS ONE 5: e11238 doi:10.1371/journal.pone.0011238.
|
[115] | Remenyi A, Lins K, Nissen LJ, Reinbold R, Scholer HR, et al. (2003) Crystal structure of a POU/HMG/DNA ternary complex suggests differential assembly of Oct4 and Sox2 on two enhancers. Genes Dev 17: 2048–2059 doi:10.1101/gad.269303.
|
[116] | Dhooge A, Govaerts W, Kuznetsov YA (2003) MATCONT: A MATLAB Package for Numerical Bifurcation Analysis of ODEs. ACM Trans Math Softw 29: 141–164 doi:10.1145/779359.779362.
|
[117] | Gillespie D (1977) Exact stochastic simulation of coupled chemical reactions. J Phys Chem 81: 2340–2361. doi: 10.1021/j100540a008
|