全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Quercetin Inhibits Intestinal Iron Absorption and Ferroportin Transporter Expression In Vivo and In Vitro

DOI: 10.1371/journal.pone.0102900

Full-Text   Cite this paper   Add to My Lib

Abstract:

Balancing systemic iron levels within narrow limits is critical for maintaining human health. There are no known pathways to eliminate excess iron from the body and therefore iron homeostasis is maintained by modifying dietary absorption so that it matches daily obligatory losses. Several dietary factors can modify iron absorption. Polyphenols are plentiful in human diet and many compounds, including quercetin – the most abundant dietary polyphenol – are potent iron chelators. The aim of this study was to investigate the acute and longer-term effects of quercetin on intestinal iron metabolism. Acute exposure of rat duodenal mucosa to quercetin increased apical iron uptake but decreased subsequent basolateral iron efflux into the circulation. Quercetin binds iron between its 3-hydroxyl and 4-carbonyl groups and methylation of the 3-hydroxyl group negated both the increase in apical uptake and the inhibition of basolateral iron release, suggesting that the acute effects of quercetin on iron transport were due to iron chelation. In longer-term studies, rats were administered quercetin by a single gavage and iron transporter expression measured 18 h later. Duodenal FPN expression was decreased in quercetin-treated rats. This effect was recapitulated in Caco-2 cells exposed to quercetin for 18 h. Reporter assays in Caco-2 cells indicated that repression of FPN by quercetin was not a transcriptional event but might be mediated by miRNA interaction with the FPN 3′UTR. Our study highlights a novel mechanism for the regulation of iron bioavailability by dietary polyphenols. Potentially, diets rich in polyphenols might be beneficial for patients groups at risk of iron loading by limiting the rate of intestinal iron absorption.

References

[1]  Sharp P, Srai SK (2007) Molecular mechanisms involved in intestinal iron absorption. World J Gastroenterol 13: 4716–4724.
[2]  Evstatiev R, Gasche C (2011) Iron sensing and signalling. Gut. 61: 933–952. doi: 10.1136/gut.2010.214312
[3]  Hurrell R, Egli I (2010) Iron bioavailability and dietary reference values. Am J Clin Nutr 91: 1461S–1467S. doi: 10.3945/ajcn.2010.28674f
[4]  Sharp P (2010) Intestinal iron absorption: regulation by dietary and systemic factors. Int J Vitamin Nutr Res 80: 231–242. doi: 10.1024/0300-9831/a000029
[5]  McKie AT, Barrow D, Latunde-Dada GO, Rolfs A, Sager G, et al. (2001) An iron-regulated ferric reductase associated with the absorption of dietary iron. Science 291: 1755–1759. doi: 10.1126/science.1057206
[6]  Wyman S, Simpson RJ, McKie AT, Sharp PA (2008) Dcytb (Cybrd1) acts as a ferric and cupric reductase and enhances cellular iron uptake. FEBS Lett 582: 1901–1906. doi: 10.1016/j.febslet.2008.05.010
[7]  Gunshin H, Mackenzie B, Berger UV, Gunshin Y, Romero M F, et al. (1997) Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature 388: 482–488. doi: 10.1038/41343
[8]  Abboud S, Haile DJ (2000) A novel mammalian iron-regulated protein involved in intracellular iron metabolism. J Biol Chem 275: 19906–19912. doi: 10.1074/jbc.m000713200
[9]  Donovan A, Brownlie A, Zhou Y, Shepard J, Pratt S J, et al. (2000) Positional cloning of zebrafish ferroportin 1 identifies a conserved vertebrate iron exporter. Nature 403: 776–781.
[10]  McKie AT, Marciani P, Rolfs A, Brennan K, Wehr K, et al. (2000) A novel duodenal iron-regulated transporter, IREG1, implicated in the basolateral transfer of iron to the circulation. Mol Cell 5: 299–309. doi: 10.1016/s1097-2765(00)80425-6
[11]  Vulpe CD, Kuo Y M, Murphy TL, Cowley L, Askwith C, et al. (1999) Hephaestin, a ceruloplasmin homologue implicated in intestinal iron transport, is defective in the sla mouse. Nature Genet 21: 195–199.
[12]  Havsteen BH (2002) The biochemistry and medical significance of the flavonoids. Pharmacol Ther 96: 67–202. doi: 10.1016/s0163-7258(02)00298-x
[13]  Cook JD, Reddy MB, Hurrell RF (1995) The effect of red and white wine on non-heme iron absorption in humans. Am J Clin Nutr 61: 800–804.
[14]  Hurrell RF, Reddy M, Cook JD (1999) Inhibition of non-haem iron absorption in man by polyphenolic-containing beverages. Br J Nutr 81: 289–295.
[15]  Samman S, Sandstr?m B, Toft MB, Bukhave K, Jensen M, et al. (2001) Green tea or rosemary extract added to foods reduces nonheme-iron absorption. Am J Clin Nutr 73: 607–612.
[16]  Kim E, Ham S, Shigenaga MK, Han O (2008) The inhibiting bioactive dietary polyphenolic compounds reduce nonheme iron transport across human intestinal cell monolayers. J Nutr 138: 1647–1651.
[17]  Petry N, Egli I, Zeder C, Walczyk T, Hurrell R (2010) Polyphenols and phytic acid contribute to the low iron bioavailability from common beans in young women. J Nutr 140: 1977–1982. doi: 10.3945/jn.110.125369
[18]  Kroon PA, Clifford MN, Crozier A, Day AJ, Donovan JL, et al. (2004) How should we assess the effects of exposure to dietary polyphenols in vitro? Am J Clin Nutr 80: 15–21.
[19]  Aherne SA, O'Brien NM (2002) Dietary flavonols: chemistry, food content, and metabolism. Nutrition. 18: 75–81. doi: 10.1016/s0899-9007(01)00695-5
[20]  Olthof MR, Hollman PCH, Vree T B, Katan MB (2000) Bioavailabilities of quercetin-3-glucoside and quercetin-4'-glucoside do not differ in humans. J Nutr 130: 1200–1203.
[21]  Day AJ, Ca?ada FJ, Díaz JC, Kroon PA, Mclauchlan R, et al. (2000) Dietary flavonoid and isoflavone glycosides are hydrolysed by the lactase site of lactase phlorizin hydrolase. FEBS Lett 468: 166–70. doi: 10.1016/s0014-5793(00)01211-4
[22]  Day AJ, Gee JM, DuPont MS, Johnson IT, Williamson G (2003) Absorption of quercetin-3-glucoside and quercetin-4'-glucoside in the rat small intestine: the role of lactase phlorizin hydrolase and the sodium-dependent glucose transporter. Biochem Pharmacol 65: 1199–206. doi: 10.1016/s0006-2952(03)00039-x
[23]  Lee HB, Blaufox MD (1985) Blood volume in the rat. J Nuclear Med 26: 72–76.
[24]  Torrance JD, Bothwell T H (1980) Tissue iron stores, in Cook, J D (ed): Methods in Hematology. vol 1. 90–115, New York, NY, Churchill Livingstone.
[25]  Chantret I, Rodolosse A, Barbat A, Dussaulx E, Brot-Laroche E, et al. (1994) Differential expression of sucrase-isomaltase in clones isolated from early and late passages of the cell line Caco-2: evidence for glucose-dependent negative regulation. J Cell Sci 107: 213–225.
[26]  Sharp PA, Tandy SR, Yamaji S, Tennant JP, Williams MR, et al. (2002) Rapid regulation of Divalent Metal Transporter (DMT1) protein but not mRNA expression by non-haem iron in human intestinal Caco-2 cells. FEBS Lett 510: 71–76. doi: 10.1016/s0014-5793(01)03225-2
[27]  Tandy S, Williams M, Leggett A, Lopez-Jimenez M, Dedes M, et al. (2000) Nramp2 expression is associated with pH-dependent iron uptake across the apical membrane of human intestinal Caco-2 cells. J Biol Chem 275: 1023–1029. doi: 10.1074/jbc.275.2.1023
[28]  Johnston K, Johnson D, Marks J, Srai SK, Debnam ES, et al. (2006) Non-haem iron transport in the rat proximal colon. Eur J Clin Invest 36: 35–40. doi: 10.1111/j.1365-2362.2006.01585.x
[29]  Zhang DL, Hughes RM, Ollivierre-Wilson H, Ghosh MC, Rouault TA (2009) A ferroportin transcript that lacks an iron-responsive element enables duodenal and erythroid precursor cells to evade translational repression. Cell Metab 9: 461–473. doi: 10.1016/j.cmet.2009.03.006
[30]  Sangokoya C, Doss JF, Chi JT (2013) Iron-responsive miR-485-3p regulates cellular iron homeostasis by targeting ferroportin. PLoS Genet 9: e1003408. doi: 10.1371/journal.pgen.1003408
[31]  Ren J, Meng S, Lekka ChE, Kaxiras E (2008) Complexation of flavonoids with iron: structure and optical signatures. J Phys Chem B 112: 1845–1850. doi: 10.1021/jp076881e
[32]  Kim EY, Ham S, Bradke D, Ma Q, Han O (2011) Ascorbic acid offsets the inhibitory effect of bioactive dietary polyphenolic compounds on transepithelial iron transport in Caco-2 intestinal cells. J Nutr 141: 828–834. doi: 10.3945/jn.110.134031
[33]  Strobel P, Allard C, Perez-Acle T, Calderon R, Aldunate R, et al. (2005) Myricetin, quercetin and catechin-gallate inhibit glucose uptake in isolated rat adipocytes. Biochem J 386: 471–478. doi: 10.1042/bj20040703
[34]  Cunningham P, Afzal-Ahmed I, Naftalin RJ (2006) Docking studies show that D-glucose and quercetin slide through the transporter GLUT1. J Biol Chem 281: 5797–5803. doi: 10.1074/jbc.m509422200
[35]  Vlachodimitropolou E, Sharp PA, Naftalin RJ (2011) Quercetin-iron chelates are transported via glucose (GLUT) transporters. Free Radic Biol Med 50: 934–944. doi: 10.1016/j.freeradbiomed.2011.01.005
[36]  Frazer DM, Wilkins SJ, Becker EM, Vulpe CD, McKie AT, et al. (2002) Hepcidin expression inversely correlates with the expression of duodenal iron transporters and iron absorption in rats. Gastroenterology 123: 835–844. doi: 10.1053/gast.2002.35353
[37]  Trinder D, Oates PS, Thomas C, Sadleir J, Morgan EH (2000) Localisation of divalent metal transporter 1 (DMT1) to the microvillus membrane of rat duodenal enterocytes in iron deficiency, but to hepatocytes in iron overload. Gut 46: 270–276. doi: 10.1136/gut.46.2.270
[38]  Yamaji S, Sharp P, Ramesh B, Srai SK (2004) Inhibition of iron transport across human intestinal epithelial cells by hepcidin. Blood 104: 2178–2180. doi: 10.1182/blood-2004-03-0829
[39]  Chaston T, Chung B, Mascarenhas M, Marks J, Patel B, et al. (2008) Evidence for differential effects of hepcidin in macrophages and intestinal epithelial cells. Gut 57: 374–382. doi: 10.1136/gut.2007.131722
[40]  Mena NP, Esparza A, Tapia V, Valdés P, Nú?ez MT (2008) Hepcidin inhibits apical iron uptake in intestinal cells. Am J Physiol 294: G192–G198. doi: 10.1152/ajpgi.00122.2007
[41]  Chung B, Chaston TB, Marks J, Srai SKS, Sharp PA (2009) Hepcidin decreases iron transporter expression in vivo in mouse duodenum and spleen and in vitro in THP-1 macrophages and intestinal Caco-2 cells. J Nutr 139: 1457–1462. doi: 10.3945/jn.108.102905
[42]  Brasse-Lagnel C, Karim Z, Letteron P, Bekri S, Bado A, et al. (2011) Intestinal DMT1 cotransporter is down-regulated by hepcidin via proteasome internalization and degradation. Gastroenterology 140: 1261–1271. doi: 10.1053/j.gastro.2010.12.037
[43]  Oates PS, Trinder D, Morgan EH (2000) Gastrointestinal function, divalent metal transporter-1 expression and intestinal iron absorption. Pflügers Arch. 440: 496–502. doi: 10.1007/s004240050018
[44]  Yeh KY, Yeh M, Watkins JA, Rodriguez-Paris J, Glass J (2000) Dietary iron induces rapid changes in rat intestinal divalent metal transporter expression. Am J Physiol 279: G1070–G1079.
[45]  Frazer DM, Wilkins SJ, Becker EM, Murphy TL, Vulpe CD, et al. (2003) A rapid decrease in the expression of DMT1 and Dcytb but not Ireg1 or hephaestin explains the mucosal block phenomenon of iron absorption. Gut 52: 340–346. doi: 10.1136/gut.52.3.340
[46]  Johnson D, Yamaji S, Tennant JP, Srai SK, Sharp PA (2005) Regulation of divalent metal transporter (DMT1) expression in human intestinal epithelial cells following exposure to non-haem iron. FEBS Lett 579: 1923–1929. doi: 10.1016/j.febslet.2005.02.035
[47]  Castoldi M, Vujic Spasic M, Altamura S, Elmén J, Lindow M, et al. (2011) The liver-specific microRNA miR-122 controls systemic iron homeostasis in mice. J Clin Invest 121: 1386–1396. doi: 10.1172/jci44883
[48]  Andolfo I, De Falco L, Asci R, Russo R, Colucci S, et al. (2010) Regulation of divalent metal transporter 1 (DMT1) non-IRE isoform by the microRNA Let-7d in erythroid cells. Haematologica 95: 1244–1252. doi: 10.3324/haematol.2009.020685
[49]  Mogilyansky E, Rigoutsos I (2013) The miR-17/92 cluster: a comprehensive update on its genomics, genetics, functions and increasingly important and numerous roles in health and disease. Cell Death Differ 20: 1603–1614. doi: 10.1038/cdd.2013.125

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133