Nitric Oxide Affects ERK Signaling through Down-Regulation of MAP Kinase Phosphatase Levels during Larval Development of the Ascidian Ciona intestinalis
In the ascidian Ciona intestinalis larval development and metamorphosis require a complex interplay of events, including nitric oxide (NO) production, MAP kinases (ERK, JNK) and caspase-3 activation. We have previously shown that NO levels affect the rate of metamorphosis, regulate caspase activity and promote an oxidative stress pathway, resulting in protein nitration. Here, we report that NO down-regulates MAP kinase phosphatases (mkps) expression affecting positively ERK signaling. By pharmacological approach, we observed that the reduction of endogenous NO levels caused a decrease of ERK phosphorylation, whereas increasing levels of NO induced ERK activation. We have also identified the ERK gene network affected by NO, including mpk1, mpk3 and some key developmental genes by quantitative gene expression analysis. We demonstrate that NO induces an ERK-independent down-regulation of mkp1 and mkp3, responsible for maintaining the ERK phosphorylation levels necessary for transcription of key metamorphic genes, such as the hormone receptor rev-erb and the van willebrand protein vwa1c. These results add new insights into the role played by NO during larval development and metamorphosis in Ciona, highlighting the cross-talk between different signaling pathways.
References
[1]
Hadfield MG (2000) Why and how marine invertebrate larvae metamorphose so fast. Sem Cell Dev Biol 11: 437–443. doi: 10.1006/scdb.2000.0197
[2]
Bishop CD, Brandhorst BP (2003) On nitric oxide signaling, metamorphosis, and the evolution of biphasic life cycles. Evol Dev 5: 542–550. doi: 10.1046/j.1525-142x.2003.03059.x
[3]
Cloney RA (1982) Ascidian larvae and the events of metamorphosis. Am Zool 22: 817–826. doi: 10.1093/icb/22.4.817
[4]
Satoh N (1994) Metamorphosis and development of adult organs. In: Bard JBL editor. Developmental Biology of Ascidians. New York: Cambridge University Press. pp. 132–138.
[5]
Baghdiguian S, Martinand-Mari C, Mangeat P (2007) Using Ciona to study developmental programmed cell death. Semin Cancer Biol 17: 147–153. doi: 10.1016/j.semcancer.2006.11.005
[6]
Dehal P, Satou Y, Campbell R K, Chapman J, Degnan B, et al. (2002) The draft genome of Ciona intestinalis: insights into chordate and vertebrate origins. Science 298: 2157–2167. doi: 10.1126/science.1080049
[7]
Satou Y, Takatori N, Fujiwara S, Nishikata T, Saiga H, et al. (2002) Ciona intestinalis cDNA projects: expressed sequence tag analyses and gene expression profiles during embryogenesis. Gene 287: 83–96. doi: 10.1016/s0378-1119(01)00826-5
[8]
Nakayama-Ishimura A, Chambon JP, Horie T, Satoh N, Sasakura Y (2009) Delineating metamorphic pathways in the ascidian Ciona intestinalis. Dev Biol 326: 357–367. doi: 10.1016/j.ydbio.2008.11.026
[9]
Comes S, Locascio A, Silvestre F, d'Ischia M, Russo GL, et al. (2007) Regulatory roles of nitric oxide during larval development and metamorphosis in Ciona intestinalis. Dev Biol 306: 772–784. doi: 10.1016/j.ydbio.2007.04.016
[10]
Chambon JP, Soule J, Pomies P, Fort P, Sahuquet A, et al. (2002) Tail regression in Ciona intestinalis (Prochordate) involves a caspase-dependent apoptosis event associated with ERK activation. Development 129: 3105–3114.
[11]
Chambon JP, Nakayama A, Takamura K, McDougall A, Satoh N (2007) ERK- and JNK-signalling regulate gene networks that stimulate metamorphosis and apoptosis in tail tissues of ascidian tadpoles. Development 134: 1203–1219. doi: 10.1242/dev.002220
[12]
Tarallo R, Sordino P (2004) Time course of programmed cell death in Ciona intestinalis in relation to mitotic activity and MAPK signaling. Dev Dyn 230: 251–262. doi: 10.1002/dvdy.20055
[13]
Andreakis N, D'Aniello S, Albalat R, Patti FP, Garcia-Fernàndez J, et al. (2011) Evolution of the nitric oxide synthase family in metazoans. Mol Biol Evol 28: 163–179. doi: 10.1093/molbev/msq179
[14]
Ercolesi E, Tedeschi G, Fiore G, Negri A, Maffioli E, et al. (2012) Protein nitration as footprint of oxidative stress-related nitric oxide signaling pathways in developing Ciona intestinalis. Nitric Oxide 27: 18–24. doi: 10.1016/j.niox.2012.03.012
[15]
Chiba S, Sasaki A, Nakayama A, Takamura K, Satoh N (2004) Development of Ciona intestinalis juveniles (through 2nd ascidian stage). Zool Sci 21: 285–298. doi: 10.2108/zsj.21.285
[16]
Goldstein S, Russo A, Samuni A (2003) Reactions of PTIO and carboxy-PTIO with *NO, *NO2 and O2-*. J Biol Chem 278: 50949–50955. doi: 10.1074/jbc.m308317200
[17]
Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acid Res 29: e45. doi: 10.1093/nar/29.9.e45
[18]
Pfaffl MW, Horgan GW, Dempfle L (2002) Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30: e36. doi: 10.1093/nar/30.9.e36
[19]
Zhang HM, Li L, Papadopoulou N, Hodgson G, Evans E, et al. (2008) Mitogen-induced recruitment of ERK and MSK to SRE promoter complexes by ternary complex factor Elk-1. Nucleic Acids Res 36: 2594–2607. doi: 10.1093/nar/gkn099
[20]
Yang D, Xie P, Liu Z (2012) Ischemia/reperfusion-induced MKP-3 impairs endothelial NO formation via inactivation of ERK1/2 pathway. PLoS One 7: e42076. doi: 10.1371/journal.pone.0042076
[21]
Farooq A, Chaturvedi G, Mujtaba S, Plotnikova O, Zeng L, et al. (2001) Solution structure of ERK2 binding domain of MAPK phosphatase MKP-3: structural insights into MKP-3 activation by ERK2. Mol Cell 7: 387–399. doi: 10.1016/s1097-2765(01)00186-1
[22]
Ueda N, Degnan SM (2013) Nitric oxide acts as a positive regulator to induce metamorphosis of the ascidian Herdmania momus. PLoS One 8: e72797. doi: 10.1371/journal.pone.0072797
[23]
Bishop CD, Bates WR, Brandhorst BP (2001) Regulation of metamorphosis in ascidians involves NO/cGMP signaling and HSP90. J Exp Zool 289: 374–384. doi: 10.1002/jez.1019
[24]
Bishop CD, Brandhorst BP (2001) NO/cGMP signaling and HSP90 activity represses metamorphosis in the sea urchin Lytechinus pictus. Biol Bull 201: 394–404. doi: 10.2307/1543617
[25]
Leise EM, Thavaradhara K, Durham NR, Turner BE (2001) Serotonin and nitric oxide regulate metamorphosis in the marine snail Ilyanassa obsoleta. Am Zool 41: 258–267. doi: 10.1668/0003-1569(2001)041[0258:sanorm]2.0.co;2
[26]
Pechenik JA, Cochrane DE, Li W, West ET, Pires A, et al. (2007) Nitric oxide inhibits metamorphosis in larvae of Crepidula fornicata, the slippershell snail. Biol Bull 213: 160–171. doi: 10.2307/25066632
[27]
Biggers WJ, Pires A, Pechenik JA, Johns E, Patel P, et al.. (2011) Inhibitors of nitric oxide synthase induce larval settlement and metamorphosis of the polychaete annelid Capitella teleta. Inv Rep Dev doi:10.1080/07924259.2011.588006.
[28]
Whittaker CA, Hynes RO (2002) Distribution and evolution of von Willebrand/integrin A domains: widely dispersed domains with roles in cell adhesion and elsewhere. Mol Biol Cell 13: 3369–3387. doi: 10.1091/mbc.e02-05-0259
[29]
Tuckwell D (1999) Evolution of von Willebrand factor A (VWA) domains. Biochem Soc Trans 27: 835–840.
[30]
Davidson B, Swalla BJ (2002) A molecular analysis of ascidian metamorphosis reveals activation of an innate immune response. Development 129: 4739–4751.
[31]
Roberts B, Davidson B, MacMaster G, Lockhart V, Ma E, et al. (2007) A complement response may activate metamorphosis in the ascidian Boltenia villosa. Dev Genes Evol 217: 449–458. doi: 10.1007/s00427-007-0157-0
[32]
Minamoto T, Hanai S, Kadota K, Oishi K, Matsumae H, et al. (2010) Circadian clock in Ciona intestinalis revealed by microarray analysis and oxygen consumption. J Biochem 147: 175–18. doi: 10.1093/jb/mvp160
[33]
Kusakabe T, Yoshida R, Kawakami I, Kusakabe R, Mochizuki Y, et al. (2002) Gene expression profiles in tadpole larvae of Ciona intestinalis. Dev Biol 242: 188–203. doi: 10.1006/dbio.2002.0538
[34]
Nakagawa M, Miyamoto T, Ohkuma M, Tsuda M (1999) Action spectrum for the photophobic response of Ciona intestinalis (Ascidieacea, Urochordata) larvae implicates retinal protein. Photochem Photobiol 70: 359–362. doi: 10.1111/j.1751-1097.1999.tb08149.x
[35]
Tsuda M, Kawakami I, Shiraishi S (2003) Sensitization and habituation of the swimming behavior in ascidian larvae to light. Zoolog Sci 20: 13–22. doi: 10.2108/zsj.20.13
[36]
Pardee KI, Xu X, Reinking J, Schuetz A, Dong A, et al. (2009) The structural basis of gas-responsive transcription by the human nuclear hormone receptor REV-ERB beta. PLoS Biol 7: e43. doi: 10.1371/journal.pbio.1000043
[37]
Murphy LO, Blenis J (2006) MAPK signal specificity: the right place at the right time. Trends Biochem Sci 31: 268–275. doi: 10.1016/j.tibs.2006.03.009
[38]
Horsch K, de Wet H, Schuurmans MM, Allie-Reid F, Cato AC, et al. (2007) Mitogen-activated protein kinase phosphatase 1/dual specificity phosphatase 1 mediates glucocorticoid inhibition of osteoblast proliferation. Mol Endocrinol 21: 2929–2940. doi: 10.1210/me.2007-0153
[39]
Comalada M, Lloberas J, Celada A (2012) MKP-1: a critical phosphatase in the biology of macrophages controlling the switch between proliferation and activation. Eur J Immunol 42: 1938–1948. doi: 10.1002/eji.201242441
[40]
Camps M, Nichols A, Arkinstall S (2000) Dual specificity phosphatases: a gene family for control of MAP kinase function. FASEB J 14: 6–16.
[41]
R?ssig L, Haendeler J, Hermann C, Malchow P, Urbich C, et al. (2000) Nitric oxide down-regulates MKP-3 mRNA levels: involvement in endothelial cell protection from apoptosis. J Biol Chem 275: 25502–25507. doi: 10.1074/jbc.m002283200
[42]
Bokemeyer D, Sorokin A, Yan M, Ahn NG, Templeton DJ, et al. (1996) Induction of mitogen-activated protein kinase phosphatase 1 by the stress-activated protein kinase signaling pathway but not by extracellular signal-regulated kinase in fibroblasts. J Biol Chem 271: 639–642. doi: 10.1074/jbc.271.2.639
[43]
Brondello JM, Brunet A, Pouyssegur J, McKenzie FR (1997) The dual specificity mitogen-activated protein kinase phosphatase-1 and-2 are induced by the p42/p44MAPK cascade. J Biol Chem 272: 1368–1376. doi: 10.1074/jbc.272.2.1368
[44]
Cook SJ, Beltman J, Cadwallader KA, McMahon M, McCormick F (1997) Regulation of mitogen-activated protein kinase phosphatase-1 expression by extracellular signal-related kinase dependent and Ca2+-dependent signal pathways in Rat-1 cells. J Biol Chem 272: 13309–13319. doi: 10.1074/jbc.272.20.13309
[45]
Bishop CD, Pires A, Norby SW, Boudko D, Moroz LL, et al. (2008) Analysis of nitric oxide-cyclic guanosine monophosphate signaling during metamorphosis of the nudibranch Phestilla sibogae Bergh (Gastropoda: Opisthobranchia). Evol Dev 10: 288–299. doi: 10.1111/j.1525-142x.2008.00238.x
[46]
Griffith OW, Stuehr DJ (1995) Nitric oxide synthases: properties and catalytic mechanism. Annu Rev Physiol 57: 707–736. doi: 10.1146/annurev.ph.57.030195.003423
[47]
Hens MD, Fowler KA, Leise EM (2006) Induction of metamorphosis decreases nitric oxide synthase gene expression in larvae of the marine mollusc Ilyanassa obsoleta. Biol Bull 211: 208–211. doi: 10.2307/4134543
[48]
Taris N, Comtet T, Viard F (2009) Inhibitory function of nitric oxide on the onset of metamorphosis in competent larvae of Crepidula fornicata: A transcriptional perspective. Mar Genomics 2: 161–167. doi: 10.1016/j.margen.2009.08.002