全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Correlation between EGFR Amplification and the Expression of MicroRNA-200c in Primary Glioblastoma Multiforme

DOI: 10.1371/journal.pone.0102927

Full-Text   Cite this paper   Add to My Lib

Abstract:

Extensive infiltration of the surrounding healthy brain tissue is a critical feature in glioblastoma. Several miRNAs have been related to gliomagenesis, some of them related with the EGFR pathway. We have evaluated whole-genome miRNA expression profiling associated with different EGFR amplification patterns, studied by fluorescence in situ hybridization in tissue microarrays, of 30 cases of primary glioblastoma multiforme, whose clinicopathological and immunohistochemical features have also been analyzed. MicroRNA-200c showed a very significant difference between tumors having or not EGFR amplification. This microRNA plays an important role in epithelial-mesenchymal transition, but its implication in the behavior of glioblastoma is largely unknown. With respect to EGFR status our cases were categorized into three groups: high level EGFR amplification, low level EGFR amplification, and no EGFR amplification. Our results showed that microRNA-200c and E-cadherin expression are down-regulated, while ZEB1 is up-regulated, when tumors showed a high level of EGFR amplification. Conversely, ZEB1 mRNA expression levels were significantly lower in the group of tumors without EGFR amplification. Tumors with a low level of EGFR amplification showed ZEB1 expression levels comparable to those detected in the group with a high level of amplification. In this study we provide what is to our knowledge the first report of association between microRNA-200c and EGFR amplification in glioblastomas.

References

[1]  Louis D, Ohgaki H, Wiestler O, Cavenee WK, Burger PC, et al.. (2007) The WHO classification of tumors of the nervous system, 4th edition, IARC.
[2]  Ohgaki H, Kleihues P (2013) The definition of primary and secondary glioblastoma. Clin Cancer Res 19: 764–772. doi: 10.1158/1078-0432.ccr-12-3002
[3]  The Cancer Genome Atlas Research Network (2008) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455: 1061–1068. doi: 10.1038/nature11903
[4]  Sauter G, Maeda T, Waldman FM (1996) Short communication: Patterns of epidermal growth factor receptor amplification in malignant gliomas. Am J Pathol 148: 1047–1053.
[5]  Okada Y, Hurwitz EE, Esposito JM, Brower MA, Nutt CL, et al. (2003) Selection pressures of TP53 mutation and microenvironmental location influence epidermal growth factor receptor gene amplification in human glioblastomas. Cancer Res 63: 413–416.
[6]  Ohgaki H, Kleihues P (2007) Genetic pathways to primary and secondary glioblastoma. Am J Pathol 170: 1445–1453. doi: 10.2353/ajpath.2007.070011
[7]  Lopez-Gines C, Gil-Benso R, Ferrer-Luna R, Benito R, Serna E, et al. (2010) New pattern of EGFR amplification in glioblastoma and the relationship of gene copy number with gene expression profile. Mod Pathol 23: 856–65. doi: 10.1038/modpathol.2010.62
[8]  Shinojima N, Tada K, Shiraishi S, Kamiryo T, Kochi M, et al. (2003) Prognostic value of epidermal growth factor receptor in patients with glioblastoma multiforme. Cancer Res 63: 6962–6970.
[9]  Layfield LJ, Willmore C, Tripp S, Jones C, Jensen RL (2006) Epidermal growth factor receptor gene amplification and protein expression in glioblastoma multiforme. Appl Immunohistochem Mol Morphol 14: 91–96. doi: 10.1097/01.pai.0000159772.73775.2e
[10]  Lee RC, Feinbaum RL, Ambros V (1993) The C elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75: 843–54. doi: 10.1016/0092-8674(93)90529-y
[11]  Winter J, Jung S, Keller S, Gregory RI, Diederichs S (2009) Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol 11: 228–234. doi: 10.1038/ncb0309-228
[12]  Calin GA, Croce CM (2006) MicroRNA signatures in human cancers. Nat Rev Cancer 6: 857–866. doi: 10.1038/nrc1997
[13]  Garzon R, Fabbri M, Cimmino A, Calin GA, Croce CM (2006) MicroRNA expression and function in cancer. Trends Mol Med 12: 580–587. doi: 10.1016/j.molmed.2006.10.006
[14]  Ciafrè SA, Galardi S, Mangiola A, Ferracin M, Liu CG, et al. (2005) Extensive modulation of a set of microRNAs in primary glioblastoma. Biochem Biophys Res Commun 334: 1351–1358. doi: 10.1016/j.bbrc.2005.07.030
[15]  Chan JA, Krichevsky AM, Kosik KS (2005) MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res 65: 6029–33. doi: 10.1158/0008-5472.can-05-0137
[16]  M?ller HG, Rasmussen AP, Andersen HH, Johnsen KB, Henriksen M, et al. (2013) A systematic review of microRNA in glioblastoma multiforme: micro-modulators in the mesenchymal mode of migration and invasion. Mol Neurobiol 47: 131–44. doi: 10.1007/s12035-012-8349-7
[17]  Korpal M, Lee ES, Hu G, Kang Y (2008) The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J Biol Chem 283: 14910–14914. doi: 10.1074/jbc.c800074200
[18]  Paterson EL, Kolesnikoff N, Gregory PA, Bert AG, Khew-Goodall Y, et al. (2008) The microRNA-200 family regulates epithelial to mesenchymal transition. Scientific World Journal 8: 901–904. doi: 10.1100/tsw.2008.115
[19]  Hurteau GJ, Carlson JA, Spivack SD, Brock GJ (2007) Overexpression of the microRNA hsa-miR-200c leads to reduced expression of transcription factor 8 and increased expression of E-cadherin. Cancer Res 67: 7972–7976. doi: 10.1158/0008-5472.can-07-1058
[20]  Burk U, Schubert J, Wellner U, Schmalhofer O, Vincan E, et al. (2008) A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Rep 9: 582–589. doi: 10.1038/embor.2008.74
[21]  Park SM, Gaur AB, Lengyel E, Peter ME (2008) The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev 22: 894–907. doi: 10.1101/gad.1640608
[22]  Cerami E, Demir E, Schultz N, Taylor BS, Sander C (2010) Automated network analysis identifies core pathways in glioblastoma. PLoS One 5: e8918. doi: 10.1371/journal.pone.0008918
[23]  Taylor BS, Barretina J, Socci ND, Decarolis P, Ladanyi M, et al. (2008) Functional copy-number alterations in cancer. PLoS One. 3: e3179. doi: 10.1371/journal.pone.0003179
[24]  Daumas-Duport C, Szikla G (1981) Definition of limits and 3D configuration of cerebral gliomas. Histological data, therapeutic incidences (author’s transl). Neurochirurgie 27: 273–284.
[25]  Claes A, Idema AJ, Wesseling P (2007) Diffuse glioma growth: a guerilla war. Acta Neuropathol 114: 443–458. doi: 10.1007/s00401-007-0293-7
[26]  Monticone M, Daga A, Candiani S, Romeo F, Mirisola V, et al. (2012) Identification of a novel set of genes reflecting different in vivo invasive patterns of human GBM cells. BMC Cancer 12: 358. doi: 10.1186/1471-2407-12-358
[27]  Talasila KM, Soentgerath A, Euskirchen P, Rosland GV, Wang J, et al. (2013) EGFR wild-type amplification and activation promote invasion and development of glioblastoma independent of angiogenesis. Acta Neuropathol 125: 683–698. doi: 10.1007/s00401-013-1101-1
[28]  Malzkorn B, Wolter M, Liesenberg F, Grzendowski M, Stühler K, et al. (2010) Identification and functional characterization of microRNAs involved in the malignant progression of gliomas. Brain Pathol 20: 539–550. doi: 10.1111/j.1750-3639.2009.00328.x
[29]  Wellner U, Schubert J, Burk UC, Schmalhofer O, Zhu F, et al. (2009) The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nat Cell Biol 11: 1487–1495. doi: 10.1038/ncb1998
[30]  Adam L, Zhong M, Choi W, Qi W, Nicoloso M, et al. (2009) miR-200 expression regulates epithelial-to-mesenchymal transition in bladder cancer cells and reverses resistance to epidermal growth factor receptor therapy. Clin Cancer Res 15: 5060–5072. doi: 10.1158/1078-0432.ccr-08-2245
[31]  Bockmeyer CL, Christgen M, Müller M, Fischer S, Ahrens P, et al. (2011) MicroRNA profiles of healthy basal and luminal mammary epithelial cells are distinct and reflected in different breast cancer subtypes. Breast Cancer Res Treat 130: 735–745. doi: 10.1007/s10549-010-1303-3
[32]  Marchini S, Cavalieri D, Fruscio R, Calura E, Garavaglia D, et al. (2011) Association between miR-200c and the survival of patients with stage I epithelial ovarian cancer: a retrospective study of two independent tumour tissue collections. Lancet Oncol 12: 273–285. doi: 10.1016/s1470-2045(11)70012-2
[33]  Kurashige J, Kamohara H, Watanabe M, Hiyoshi Y, Iwatsuki M, et al. (2012) MicroRNA-200b regulates cell proliferation, invasion, and migration by directly targeting ZEB2 in gastric carcinoma. Ann Surg Oncol 19 Suppl 3S656–64. doi: 10.1245/s10434-012-2217-6
[34]  Zhang Z, Liu ZB, Ren WM, Ye XG, Zhang YY (2012) The miR-200 family regulates the epithelial-mesenchymal transition induced by EGF/EGFR in anaplastic thyroid cancer cells. Int J Mol Med 30: 856–862. doi: 10.3892/ijmm.2012.1059
[35]  Lee MY, Chou CY, Tang MJ, Shen MR (2008) Epithelial-mesenchymal transition in cervical cancer: correlation with tumor progression, epidermal growth factor receptor overexpression, and snail up-regulation. Clin Cancer Res 14: 4743–4750. doi: 10.1158/1078-0432.ccr-08-0234
[36]  Canel M, Serrels A, Frame MC, Brunton VG (2013) E-cadherin-integrin crosstalk in cancer invasion and metastasis. J Cell Sci 126: 393–401. doi: 10.1242/jcs.100115
[37]  Le Bras GF, Taubenslag KJ, Andl CD (2012) The regulation of cell-cell adhesion during epithelial-mesenchymal transition, motility and tumor progression. Cell Adh Migr 6: 365–373. doi: 10.4161/cam.21326
[38]  Szerlip NJ, Pedraza A, Chakravarty D, Azim M, McGuire J, et al. (2012) Intratumoral heterogeneity of receptor tyrosine kinases EGFR and PDGFRA amplification in glioblastoma defines subpopulations with distinct growth factor response. Proc Natl Acad Sci USA 109: 3041–3046. doi: 10.1073/pnas.1114033109
[39]  Siebzehnrubl FA, Silver DJ, Tugertimur B, Deleyrolle LP, Siebzehnrubl D, et al. (2013) The ZEB1 pathway links glioblastoma initiation, invasion and chemoresistance. EMBO Mol Med 5: 1196–1212. doi: 10.1002/emmm.201302827
[40]  Utsuki S, Sato Y, Oka H, Tsuchiya B, Suzuki S, et al. (2002) Relationship between the expression of E-, N-cadherins and beta-catenin and tumor grade in astrocytomas. J Neurooncol 57: 187–192.
[41]  Lewis-Tuffin LJ, Rodriguez F, Giannini C, Scheithauer B, Necela BM, et al. (2010) Misregulated E-cadherin expression associated with an aggressive brain tumor phenotype. PLoS One 5: e13665. doi: 10.1371/journal.pone.0013665
[42]  Kahlert UD, Maciaczyk D, Doostkam S, Orr BA, Simons B, et al. (2012) Activation of canonical WNT/β-catenin signaling enhances in vitro motility of glioblastoma cells by activation of ZEB1 and other activators of epithelial-to-mesenchymal transition. Cancer Lett 325: 42–53. doi: 10.1016/j.canlet.2012.05.024
[43]  Kahlert UD, Nikkhah G, Maciaczyk J (2013) Epithelial-to-mesenchymal(-like) transition as a relevant molecular event in malignant gliomas. Cancer Lett 331: 131–138. doi: 10.1016/j.canlet.2012.12.010
[44]  Edwards LA, Woolard K, Son MJ, Li A, Lee J, et al. (2001) Effect of brain- and tumor-derived connective tissue growth factor on glioma invasion. J Natl Cancer Inst 103: 1162–1178. doi: 10.1093/jnci/djr224

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133