全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Increased Noise Levels Have Different Impacts on the Anti-Predator Behaviour of Two Sympatric Fish Species

DOI: 10.1371/journal.pone.0102946

Full-Text   Cite this paper   Add to My Lib

Abstract:

Animals must avoid predation to survive and reproduce, and there is increasing evidence that man-made (anthropogenic) factors can influence predator?prey relationships. Anthropogenic noise has been shown to have a variety of effects on many species, but work investigating the impact on anti-predator behaviour is rare. In this laboratory study, we examined how additional noise (playback of field recordings of a ship passing through a harbour), compared with control conditions (playback of recordings from the same harbours without ship noise), affected responses to a visual predatory stimulus. We compared the anti-predator behaviour of two sympatric fish species, the three-spined stickleback (Gasterosteus aculeatus) and the European minnow (Phoxinus phoxinus), which share similar feeding and predator ecologies, but differ in their body armour. Effects of additional-noise playbacks differed between species: sticklebacks responded significantly more quickly to the visual predatory stimulus during additional-noise playbacks than during control conditions, while minnows exhibited no significant change in their response latency. Our results suggest that elevated noise levels have the potential to affect anti-predator behaviour of different species in different ways. Future field-based experiments are needed to confirm whether this effect and the interspecific difference exist in relation to real-world noise sources, and to determine survival and population consequences.

References

[1]  Watts RD, Compton RW, McCammon JH, Rich CL, Wright SM, et al. (2007) Roadless space of the conterminous United States. Science 316: 736–738. doi: 10.1126/science.1138141
[2]  Normandeau Associates Inc (2012) Effects of noise on fish, fisheries, and invertebrates in the U.S. Atlantic and Arctic from energy industry sound-generating activities. A literature synthesis for the U.S. Dept. of the Interior, Bureau of Ocean Energy Management. Contract # M11PC00031: pp.153 Available: http://www.cbd.int/doc/meetings/mar/mcbe?m-2014-01/other/mcbem-2014-01-submission?-boem-04-en.pdf Accessed 2014 March 18..
[3]  Morley EL, Jones G, Radford AN (2014) The importance of inverebrates when considering the impacts of anthropogenic noise. Proc R Soc B 281: 20132683. doi: 10.1098/rspb.2013.2683
[4]  Read J, Jones G, Radford AN (2014) Fitness costs as well as benefits are important when considering responses to anthropogenic noise. Behav Ecol 25: 4–7. doi: 10.1093/beheco/art102
[5]  Caro T (2005) Antipredator defenses in birds and mammals. Chicago: University of Chicago Press.
[6]  Chan AAYH, Giraldo-Perez P, Smith S, Blumstein DT (2010) Anthropogenic noise affects risk assessment and attention: the distracted prey hypothesis. Biol Lett 6: 458–461. doi: 10.1098/rsbl.2009.1081
[7]  Wale MA, Simpson SD, Radford AN (2013) Noise negatively affects foraging and antipredator behaviour in shore crabs. Anim Behav 86: 111–118. doi: 10.1016/j.anbehav.2013.05.001
[8]  Simpson SD, Purser J, Radford AN (In press) Acoustic disturbance compromises fish anti-predator behaviour. Glob Change Biol.
[9]  Manley G (2012) Vertebrate hearing: origin, evolution and functions. In: Barth F, Giampieri-Deutsch P, Klein HD, editors. Sensory perception. Vienna: Springer. 23–40.
[10]  Stumpner A, von Helversen D (2001) Evolution and function of auditory systems in insects. Naturwissenschaften 88: 159–170. doi: 10.1007/s001140100223
[11]  Hofer H, East ML (1998) Biological conservation and stress. Adv Stud Behav 27: 405–525. doi: 10.1016/s0065-3454(08)60370-8
[12]  Francis CD, Ortega CP, Cruz A (2011) Different behavioural responses to anthropogenic noise by two closely related passerine birds. Biol Lett 7: 850–852. doi: 10.1098/rsbl.2011.0359
[13]  Ríos-Chelén AA, Salaberria C, Barbosa I, Macías GC, Gil D (2012) The learning advantage: bird species that learn their song show a tighter adjustment of song to noisy environments than those that do not learn. J Evol Biol 25: 2171–2180. doi: 10.1111/j.1420-9101.2012.02597.x
[14]  Voellmy IK, Purser J, Flynn D, Kennedy P, Simpson SD, et al. (2014) Acoustic noise reduces foraging success via different mechanisms in two sympatric fish species. Anim Behav 89: 191–198. doi: 10.1016/j.anbehav.2013.12.029
[15]  Francis CD, Ortega CP, Cruz A (2009) Noise pollution changes avian communities and species interactions. Curr Biol 19: 1415–1419. doi: 10.1016/j.cub.2009.06.052
[16]  Slabbekoorn H, Bouton N, van Opzeeland I, Coers A, ten Cate C, et al. (2010) A noisy spring: the impact of globally rising underwater sound levels on fish. Trends Ecol Evol 25: 419–427. doi: 10.1016/j.tree.2010.04.005
[17]  Popper AN, Fay RR, Platt C, Sand O (2003) Sound detection mechanisms and capabilities of teleost fishes. In: Collin SP, Marshall NJ, editors. Sensory processing in aquatic environments. New York: Springer. 3–38.
[18]  Popper AN, Hastings MC (2009) The effects of anthropogenic sources of sound on fishes. J Fish Biol 75: 455–489. doi: 10.1111/j.1095-8649.2009.02319.x
[19]  Fay RR, Popper AN, Webb JF (2008) Introduction to fish bioacoustics. In: Webb JF, Fay RR, Popper AN, editors. Fish bioacoustics. New York: Springer. 1–15.
[20]  Fay RR, Popper AN (2012) Fish hearing: new perspectives from two ‘senior’ bioacousticians. Brain Behav Evol 79: 215–217. doi: 10.1159/000338719
[21]  Pottinger TG (2010) A multivariate comparison of the stress response in three salmonid and three cyprinid species: evidence for inter-family differences. J Fish Biol 76: 601–621. doi: 10.1111/j.1095-8649.2009.02516.x
[22]  Helfman GS, Collette BB, Facey DE, Bowen BW (2009) Chapter 20: Fishes as prey. In: The diversity of fishes: biology, evolution, and ecology. Chichester: Wiley-Blackwell. 439–454.
[23]  McLean EB, Godin JGJ (1989) Distance to cover and fleeing from predators in fish with different amounts of defensive armour. Oikos 55: 281–290. doi: 10.2307/3565586
[24]  Abrahams MV (1995) The interaction between antipredator behaviour and antipredator morphology: experiments with fathead minnows and brook sticklebacks. Can J Zool 73: 2209–2215. doi: 10.1139/z95-261
[25]  Krause J, Cheng DJS, Kirkman E, Ruxton GD (2000) Species-specific patterns of refuge use in fish: the role of metabolic expenditure and body length. Behaviour 137: 1113–1127. doi: 10.1163/156853900502466
[26]  Kastelein RA, van der Heul S, Verboom WC, Jennings N, van der Veen J, et al. (2008) Startle response of captive North Sea fish species to underwater tones between 0.1 and 64 kHz. Mar Environ Res 65: 369–377. doi: 10.1016/j.marenvres.2008.01.001
[27]  Codarin A, Wysocki LE, Ladich F, Picciulin M (2009) Effects of ambient and boat noise on hearing and communication in three fish species living in a marine protected area (Miramare, Italy). Mar Pollut Bull 58: 1880–1887. doi: 10.1016/j.marpolbul.2009.07.011
[28]  Wale MA, Simpson SD, Radford AN (2013) Size-dependent physiological responses of shore crabs to single and repeated playback of ship noise. Biol Lett 9: 20121194. doi: 10.1098/rsbl.2012.1194
[29]  Bruintjes R, Radford AN (2013) Context-dependent impacts of anthropogenic noise on individual and social behaviour in a cooperatively breeding fish. Anim Behav 85: 1343–1349. doi: 10.1016/j.anbehav.2013.03.025
[30]  Parvulescu A (1967) The acoustics of small tanks. In: Tavolga WN, editor. Marine bioacoustics. Oxford: Pergamon Press. 7–14.
[31]  Akamatsu T, Okumura T, Novarini N, Yan HY (2002) Empirical refinements applicable to the recording of fish sounds in small tanks. J Acoust Soc Am 112: 3073–3082. doi: 10.1121/1.1515799
[32]  Popper AN, Fay RR (2011) Rethinking sound detection by fishes. Hear Res 273: 25–36. doi: 10.1016/j.heares.2009.12.023
[33]  Dixson DL, Munday PL, Jones GP (2010) Ocean acidification disrupts the innate ability of fish to detect predator olfactory cues. Ecol Lett 13: 68–75. doi: 10.1111/j.1461-0248.2009.01400.x
[34]  Scott GR, Johnson IA (2012) Temperature during embryonic development has persistent effects on thermal acclimation capacity in zebrafish. P Natl Acad Sci USA 109: 14247–14252. doi: 10.1073/pnas.1205012109
[35]  Froese R, Pauly D (2014) FishBase. Available: http://www.fishbase.org/summary/Gasteros?teus-aculeatus.html (Gasterosteus aculeatus), http://www.fishbase.org/summary/Phoxinus?-phoxinus.html (Phoxinus phoxinus). Accessed 2014 Jun 28.
[36]  Joint Nature Conservation Committee and Centre for Ecology and Hydrolology (2011) National Biodiversity Networks Gateway Interactive Map. Available: https://data.nbn.org.uk/Taxa/NBNSYS00001?88612 (Gasterosteus aculeatus, https://data.nbn.org.uk/Taxa/NHMSYS00005?44721 (Phoxinus phoxinus). Accessed 2014 Jun 28.
[37]  Giles N (1981) Predation effects upon the behaviour and ecology of Scottish Gasterosteus aculeatus L. populations. PhD thesis. University of Glasgow, UK.
[38]  Reimchen TE (1994) Predators and morphological evolution in threespine stickleback. In: Bell MA, Foster SA, editors. The evolutionary biology of the threespine stickleback. Oxford: Oxford University Press. 240–276.
[39]  Huntingford FA, Ruiz-Gomez ML (2009) Three-spined sticklebacks Gasterosteus aculeatus as a model for exploring behavioural biology. J Fish Biol 75: 1943–1976. doi: 10.1111/j.1095-8649.2009.02420.x
[40]  Katsiadaki I (2006) The use of the stickleback as a sentinel and model species in ecotoxicology. In: ?stlund-Nilsson S, Mayer I, Huntingford FA, editors. The biology of the three-spined stickleback. London: CRC Press. 319–351.
[41]  Gibson G (2005) The synthesis and evolution of a supermodel. Science 307: 1890–1891. doi: 10.1126/science.1109835
[42]  Mendall HL (1939) Food habits of the herring gull in relation to freshwater game fishes in Maine. Wilson Bull 51: 223–226.
[43]  Buczacki S (2002) Fauna Britannica. London: Hamlyn.
[44]  Hoogland R, Morris D, Tinbergen N (1957) The spines of sticklebacks (Gasterosteus and Pygosteus) as means of defence against predators (Perca and Esox). Behaviour 10: 205–236. doi: 10.1163/156853956x00156
[45]  Mathis A, Chivers DP (2003) Overriding the oddity effect in mixed-species aggregations: group choice by armored and nonarmored prey. Behav Ecol 14: 334–339. doi: 10.1093/beheco/14.3.334
[46]  Dijkgraaf S, Verheijen FJ (1950) Neue Versuche über das Tonunterscheidungsverm?gen der Elritze. J Comp Physiol A 32: 248–256. doi: 10.1007/bf00344526
[47]  Mann DA, Cott PA, Hanna BW, Popper AN (2007) Hearing in eight species of northern Canadian freshwater fishes. J Fish Biol 70: 109–120. doi: 10.1111/j.1095-8649.2006.01279.x
[48]  Ladich F, Fay RR (2013) Auditory evoked potential audiometry in fish. Rev Fish Biol Fisher 23: 317–364. doi: 10.1007/s11160-012-9297-z
[49]  Whoriskey FG, Fitzgerald GJ (1985) The effects of bird predation on an estuarine stickleback (Pisces: Gasterosteidae) community. Can J Zool 63: 301–307. doi: 10.1139/z85-046
[50]  Giles N, Huntingford FA (1984) Predation risk and inter-population variation in antipredator behaviour in the threespined stickleback. Anim Behav 32: 264–275. doi: 10.1016/s0003-3472(84)80346-2
[51]  Metcalfe NB, Huntingford FA, Thorpe JE (1987) The influence of predation risk on the feeding motivation and foraging strategy of juvenile Atlantic salmon. Anim Behav 35: 901–911. doi: 10.1016/s0003-3472(87)80125-2
[52]  Mendl M (1999) Performing under pressure: stress and cognitive function. Appl Anim Behav Sci 65: 221–244. doi: 10.1016/s0168-1591(99)00088-x
[53]  Purser J, Radford AN (2011) Acoustic noise induces attention shifts and reduces foraging performance in three-spined sticklebacks (Gasterosteus aculeatus). PLoS ONE 6: e17478. doi: 10.1371/journal.pone.0017478
[54]  Jones KA, Godin JGJ (2010) Are fast explorers slow reactors? Linking personality type and anti-predator behaviour. Proc R Soc B 277: 625–632. doi: 10.1098/rspb.2009.1607
[55]  R Core Team (2012) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available: http://web.mit.edu/r_v2.15.1/refman.pdf. Accessed 2012 Aug 25.
[56]  Bates D, Maechler M, Bolker B (2012) lme4: Linear mixed-effects models using S4 classes. R package version 0.999999-0. Available: http://cran.r-project.org/web/packages/l?me4/lme4.pdf. Accessed 2013 Jan 11.
[57]  Therneau T (2012) A Package for Survival Analysis in S. R package version 2.36–14. Available: http://cran.r-project.org/web/packages/s?urvival/survival.pdf. Accessed 2012 Aug 25.
[58]  Therneau T (2012) coxme: Mixed Effects Cox Models. R package version 2.2–3. Available: http://cran.r-project.org/web/packages/c?oxme/coxme.pdf. Accessed 2014 May 28.
[59]  Quinn JL, Whittingham MJ, Butler SJ, Cresswell W (2006) Noise, predation risk compensation and vigilance in the chaffinch Fringilla coelebs. J Avian Biol 37: 601–608. doi: 10.1111/j.2006.0908-8857.03781.x
[60]  Rabin LA, Coss RG, Owings DH (2006) The effects of wind turbines on antipredator behavior in California ground squirrels (Spermophilus beecheyi). Biol Conserv 131: 410–420. doi: 10.1016/j.biocon.2006.02.016
[61]  Wright AJ, Soto NA, Baldwin AL, Bateson M, Beale CM, et al. (2007) Anthropogenic noise as a stressor in animals: a multidisciplinary perspective. Int J Comp Psychol 20: 250–273.
[62]  Charmandari E, Tsigos C, Chrousos G (2005) Endocrinology of the stress response. Annu Rev Psychol 67: 259–284. doi: 10.1146/annurev.physiol.67.040403.120816
[63]  Siemers BM, Schaub A (2011) Hunting at the highway: traffic noise reduces foraging efficiency in acoustic predators. Proc R Soc B 278: 1646–1652. doi: 10.1098/rspb.2010.2262
[64]  Krause J, Godin JGJ (1996) Influence of prey foraging posture on flight behavior and predation risk: predators take advantage of unwary prey. Behav Ecol 7: 264–271. doi: 10.1093/beheco/7.3.264
[65]  Ydenberg RC, Dill LM (1986) The economics of fleeing from predators. Adv Stud Behav 16: 229–249. doi: 10.1016/s0065-3454(08)60192-8
[66]  Lima SL, Dill LM (1990) Behavioral decisions made under the risk of predation: a review and prospectus. Can J Zool 68: 619–640. doi: 10.1139/z90-092
[67]  Slabbekoorn H (2014) Aiming for progress in understanding underwater noise impact on fish: complementary need for indoor and outdoor studies. In: Popper AN, Hawkins AD, editors. Effects of noise on aquatic life II New York: Springer. In press.
[68]  Sarà G, Dean JM, Amato DD, Buscaino G, Oliveri A, et al. (2007) Effect of boat noise on the behaviour of bluefin tuna Thunnus thynnus in the Mediterranean Sea. Mar Ecol Prog Ser 331: 243–253. doi: 10.3354/meps331243
[69]  Eng?s A, Misund OA, Soldal AV, Horvei B, Solstad A (1995) Reactions of penned herring and cod to playback of original, frequency-filtered and time-smoothed vessel sound. Fish Res 22: 243–254. doi: 10.1016/0165-7836(94)00317-p
[70]  Picciulin M, Sebastianutto L, Codarin A, Farina A, Ferrero EA (2010) In situ behavioural responses to boat noise exposure of Gobius cruentatus (Gmelin, 1789; fam. Gobiidae) and Chromis chromis (Linnaeus, 1758; fam. Pomacentridae) living in a Marine Protected Area. J Exp Mar Biol Ecol 386: 125–132. doi: 10.1016/j.jembe.2010.02.012

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133