全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Novel Small Molecule XPO1/CRM1 Inhibitors Induce Nuclear Accumulation of TP53, Phosphorylated MAPK and Apoptosis in Human Melanoma Cells

DOI: 10.1371/journal.pone.0102983

Full-Text   Cite this paper   Add to My Lib

Abstract:

XPO1/CRM1 is a key nuclear exporter protein that mediates translocation of numerous cellular regulatory proteins. We investigated whether XPO1 is a potential therapeutic target in melanoma using novel selective inhibitors of nuclear export (SINE). In vitro effects of SINE on cell growth and apoptosis were measured by MTS assay and flow cytometry [Annexin V/propidium iodide (PI)], respectively in human metastatic melanoma cell lines. Immunoblot analysis was used to measure nuclear localization of key cellular proteins. The in vivo activity of oral SINE was evaluated in NOD/SCID mice bearing A375 or CHL-1 human melanoma xenografts. SINE compounds induced cytostatic and pro-apoptotic effects in both BRAF wild type and mutant (V600E) cell lines at nanomolar concentrations. The cytostatic and pro-apoptotic effects of XPO1 inhibition were associated with nuclear accumulation of TP53, and CDKN1A induction in the A375 cell line with wild type TP53, while pMAPK accumulated in the nucleus regardless of TP53 status. The orally bioavailable KPT-276 and KPT-330 compounds significantly inhibited growth of A375 (p<0.0001) and CHL-1 (p = 0.0087) human melanoma cell lines in vivo at well tolerated doses. Inhibition of XPO1 using SINE represents a potential therapeutic approach for melanoma across cells with diverse molecular phenotypes by promoting growth inhibition and apoptosis.

References

[1]  Siegel R, Ma J, Zou Z, Jemal A (2014) Cancer statistics, 2014. CA Cancer J Clin 64: 9–29. doi: 10.3322/caac.21208
[2]  Ferlay J, Soerjomataram I, Ervik M, Dikshit R, Eser S, et al.. (2012) Globocan 2012: Estimated Cancer Incidence, Mortality and Prevalence Worldwide in 2012. Int J Cancer.
[3]  Hodi FS, O'Day SJ, McDermott DF, Weber RW, Sosman JA, et al. (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363: 711–723. doi: 10.1056/nejmoa1003466
[4]  Ribas A (2007) Anti-CTLA4 Antibody Clinical Trials in Melanoma. Update Cancer Ther 2: 133–139. doi: 10.1016/j.uct.2007.09.001
[5]  Rebecca VW, Smalley KS (2011) Tumor heterogeneity and strategies to overcome kinase inhibitor resistance in cancer: lessons from melanoma. Expert Opin Investig Drugs 20: 137–140. doi: 10.1517/13543784.2011.546218
[6]  Freedman DA, Levine AJ (1998) Nuclear export is required for degradation of endogenous p53 by MDM2 and human papillomavirus E6. Mol Cell Biol 18: 7288–7293.
[7]  van der Watt PJ, Maske CP, Hendricks DT, Parker MI, Denny L, et al. (2009) The Karyopherin proteins, Crm1 and Karyopherin beta1, are overexpressed in cervical cancer and are critical for cancer cell survival and proliferation. Int J Cancer 124: 1829–1840. doi: 10.1002/ijc.24146
[8]  Mutka SC, Yang WQ, Dong SD, Ward SL, Craig DA, et al. (2009) Identification of nuclear export inhibitors with potent anticancer activity in vivo. Cancer Res 69: 510–517. doi: 10.1158/0008-5472.can-08-0858
[9]  Fukuda M, Asano S, Nakamura T, Adachi M, Yoshida M, et al. (1997) CRM1 is responsible for intracellular transport mediated by the nuclear export signal. Nature 390: 308–311.
[10]  Kau TR, Silver PA (2003) Nuclear transport as a target for cell growth. Drug Discov Today 8: 78–85. doi: 10.1016/s1359-6446(02)02562-x
[11]  Henderson BR, Eleftheriou A (2000) A comparison of the activity, sequence specificity, and CRM1-dependence of different nuclear export signals. Exp Cell Res 256: 213–224. doi: 10.1006/excr.2000.4825
[12]  Kanai M, Hanashiro K, Kim SH, Hanai S, Boulares AH, et al. (2007) Inhibition of Crm1-p53 interaction and nuclear export of p53 by poly(ADP-ribosyl)ation. Nat Cell Biol 9: 1175–1183. doi: 10.1038/ncb1638
[13]  Chen L, Shao C, Cobos E, Wang JS, Gao W (2010) 4-(methylnitrosamino)-1-(3-pyridyl)-1-bu?tanone[corrected] induces CRM1-dependent p53 nuclear accumulation in human bronchial epithelial cells. Toxicol Sci 116: 206–215. doi: 10.1093/toxsci/kfq123
[14]  Turner JG, Sullivan DM (2008) CRM1-mediated nuclear export of proteins and drug resistance in cancer. Curr Med Chem 15: 2648–2655. doi: 10.2174/092986708786242859
[15]  Adachi M, Fukuda M, Nishida E (2000) Nuclear export of MAP kinase (ERK) involves a MAP kinase kinase (MEK)-dependent active transport mechanism. J Cell Biol 148: 849–856. doi: 10.1083/jcb.148.5.849
[16]  Huang WY, Yue L, Qiu WS, Wang LW, Zhou XH, et al. (2009) Prognostic value of CRM1 in pancreas cancer. Clin Invest Med 32: E315.
[17]  Shen A, Wang Y, Zhao Y, Zou L, Sun L, et al. (2009) Expression of CRM1 in human gliomas and its significance in p27 expression and clinical prognosis. Neurosurgery 65: 153–159 discussion 159?160. doi: 10.1227/01.neu.0000348550.47441.4b
[18]  Noske A, Weichert W, Niesporek S, Roske A, Buckendahl AC, et al. (2008) Expression of the nuclear export protein chromosomal region maintenance/exportin 1/Xpo1 is a prognostic factor in human ovarian cancer. Cancer 112: 1733–1743. doi: 10.1002/cncr.23354
[19]  Yao Y, Dong Y, Lin F, Zhao H, Shen Z, et al. (2009) The expression of CRM1 is associated with prognosis in human osteosarcoma. Oncol Rep 21: 229–235. doi: 10.3892/or_00000213
[20]  Lecane PS, Kiviharju TM, Sellers RG, Peehl DM (2003) Leptomycin B stabilizes and activates p53 in primary prostatic epithelial cells and induces apoptosis in the LNCaP cell line. Prostate 54: 258–267. doi: 10.1002/pros.10197
[21]  Hietanen S, Lain S, Krausz E, Blattner C, Lane DP (2000) Activation of p53 in cervical carcinoma cells by small molecules. Proc Natl Acad Sci U S A 97: 8501–8506. doi: 10.1073/pnas.97.15.8501
[22]  Pathria G, Wagner C, Wagner SN (2012) Inhibition of CRM1-Mediated Nucleocytoplasmic Transport: Triggering Human Melanoma Cell Apoptosis by Perturbing Multiple Cellular Pathways. J Invest Dermatol 132: 2780–2790. doi: 10.1038/jid.2012.233
[23]  Kudo N, Matsumori N, Taoka H, Fujiwara D, Schreiner EP, et al. (1999) Leptomycin B inactivates CRM1/exportin 1 by covalent modification at a cysteine residue in the central conserved region. Proc Natl Acad Sci U S A 96: 9112–9117. doi: 10.1073/pnas.96.16.9112
[24]  Roberts BJ, Hamelehle KL, Sebolt JS, Leopold WR (1986) In vivo and in vitro anticancer activity of the structurally novel and highly potent antibiotic CI-940 and its hydroxy analog (PD 114,721). Cancer Chemother Pharmacol 16: 95–101. doi: 10.1007/bf00256156
[25]  Newlands ES, Rustin GJ, Brampton MH (1996) Phase I trial of elactocin. Br J Cancer 74: 648–649.
[26]  Fragomeni RAS, Chung H, Landesman Y, Senapedis W, Saint-Martin JR, et al. (2013) CRM1 and BRAF Inhibition Synergize and Induce Tumor Regression in BRAF-Mutant Melanoma. Mol Cancer Ther 12: 1171–1179. doi: 10.1158/1535-7163.mct-12-1171
[27]  Giovanella BC, Yim SO, Stehlin JS, Williams LJ Jr (1972) Development of invasive tumors in the “nude” mouse after injection of cultured human melanoma cells. J Natl Cancer Inst 48: 1531–1533.
[28]  Vermes I, Haanen C, Steffens-Nakken H, Reutelingsperger C (1995) A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V. J Immunol Methods 184: 39–51. doi: 10.1016/0022-1759(95)00072-i
[29]  Kuzumaki T, Kobayashi T, Ishikawa K (1998) Genistein induces p21(Cip1/WAF1) expression and blocks the G1 to S phase transition in mouse fibroblast and melanoma cells. Biochem Biophys Res Commun 251: 291–295. doi: 10.1006/bbrc.1998.9462
[30]  Hill A (1910) The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves. The Journal of Physiology 40 : iv?vii.
[31]  Cagnol S, Chambard JC (2010) ERK and cell death: mechanisms of ERK-induced cell death—apoptosis, autophagy and senescence. FEBS J 277: 2–21. doi: 10.1111/j.1742-4658.2009.07366.x
[32]  Kubbutat MH, Jones SN, Vousden KH (1997) Regulation of p53 stability by Mdm2. Nature 387: 299–303. doi: 10.1038/387299a0
[33]  Wu L, Levine AJ (1997) Differential regulation of the p21/WAF-1 and mdm2 genes after high-dose UV irradiation: p53-dependent and p53-independent regulation of the mdm2 gene. Mol Med 3: 441–451.
[34]  Guttler T, Gorlich D (2011) Ran-dependent nuclear export mediators: a structural perspective. EMBO J 30: 3457–3474. doi: 10.1038/emboj.2011.287
[35]  Xu D, Farmer A, Chook YM (2010) Recognition of nuclear targeting signals by Karyopherin-beta proteins. Curr Opin Struct Biol 20: 782–790. doi: 10.1016/j.sbi.2010.09.008
[36]  Jang BC, Munoz-Najar U, Paik JH, Claffey K, Yoshida M, et al. (2003) Leptomycin B, an inhibitor of the nuclear export receptor CRM1, inhibits COX-2 expression. J Biol Chem 278: 2773–2776. doi: 10.1074/jbc.c200620200
[37]  Jang BC, Sung SH, Park JG, Park JW, Suh MH, et al. (2006) Leptomycin B, a metabolite of Streptomyces, inhibits the expression of inducible nitric oxide synthase in BV2 microglial cells. Int J Oncol 29: 1509–1515. doi: 10.3892/ijo.29.6.1509
[38]  Ranganathan P, Yu X, Na C, Santhanam R, Shacham S, et al. (2012) Preclinical activity of a novel CRM1 inhibitor in acute myeloid leukemia. Blood 120: 1765–1773. doi: 10.1182/blood-2012-04-423160
[39]  Etchin J, Sanda T, Mansour MR, Kentsis A, Montero J, et al. (2013) KPT-330 inhibitor of CRM1 (XPO1)-mediated nuclear export has selective anti-leukaemic activity in preclinical models of T-cell acute lymphoblastic leukaemia and acute myeloid leukaemia. Br J Haematol 161: 117–127. doi: 10.1111/bjh.12231
[40]  Lapalombella R, Sun Q, Williams K, Tangeman L, Jha S, et al. (2012) Selective inhibitors of nuclear export (SINE) show that CRM1/XPO1 is a target in chronic lymphocytic leukemia. Blood 120: 4621–4634. doi: 10.1182/blood-2012-05-429506
[41]  Davies H, Bignell GR, Cox C, Stephens P, Edkins S, et al. (2002) Mutations of the BRAF gene in human cancer. Nature 417: 949–954. doi: 10.1038/nature00766
[42]  Flaherty KT, Puzanov I, Kim KB, Ribas A, McArthur GA, et al. (2010) Inhibition of mutated, activated BRAF in metastatic melanoma. N Engl J Med 363: 809–819. doi: 10.1056/nejmoa1002011
[43]  Nazarian R, Shi H, Wang Q, Kong X, Koya RC, et al. (2010) Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature 468: 973–977. doi: 10.1038/nature09626
[44]  Shi H, Moriceau G, Kong X, Lee MK, Lee H, et al. (2012) Melanoma whole-exome sequencing identifies (V600E)B-RAF amplification-mediated acquired B-RAF inhibitor resistance. Nat Commun 3: 724. doi: 10.1038/ncomms1727
[45]  Flaherty KT, Infante JR, Daud A, Gonzalez R, Kefford RF, et al. (2012) Combined BRAF and MEK Inhibition in Melanoma with BRAF V600 Mutations. N Engl J Med 367: 1694–1703. doi: 10.1056/nejmoa1210093
[46]  Smart P, Lane EB, Lane DP, Midgley C, Vojtesek B, et al. (1999) Effects on normal fibroblasts and neuroblastoma cells of the activation of the p53 response by the nuclear export inhibitor leptomycin B. Oncogene. 18: 7378–7386. doi: 10.1038/sj.onc.1203260
[47]  Persons DL, Yazlovitskaya EM, Pelling JC (2000) Effect of extracellular signal-regulated kinase on p53 accumulation in response to cisplatin. J Biol Chem 275: 35778–35785. doi: 10.1074/jbc.m004267200
[48]  She QB, Chen N, Dong Z (2000) ERKs and p38 kinase phosphorylate p53 protein at serine 15 in response to UV radiation. J Biol Chem 275: 20444–20449. doi: 10.1074/jbc.m001020200
[49]  Wang S, Shi X (2001) Mechanisms of Cr(VI)-induced p53 activation: the role of phosphorylation, mdm2 and ERK. Carcinogenesis 22: 757–762. doi: 10.1093/carcin/22.5.757
[50]  Zhang K, Wang M, Tamayo AT, Shacham S, Kauffman M, et al. (2012) Novel selective inhibitors of nuclear export CRM1 antagonists for therapy in mantle cell lymphoma. Exp Hematol 41: 67–78. doi: 10.1016/j.exphem.2012.09.002

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133