[1] | Klein C, Marino A, Sagot M-F, Vieira Milreu P, Brilli M (2012) Structural and dynamical analysis of biological networks. Briefings in Functional Genomics 11: 420–433. doi: 10.1093/bfgp/els030
|
[2] | Prill RJ, Iglesias PA, Levchenko A (2005) Dynamic Properties of Network Motifs Contribute to Biological Network Organization. PLoS Biolology 3: e343. doi: 10.1371/journal.pbio.0030343
|
[3] | Kwon Y-K, Cho K-H (2008) Quantitative analysis of robustness and fragility in biological networks based on feedback dynamics. Bioinformatics 24: 987–994. doi: 10.1093/bioinformatics/btn060
|
[4] | Kremling A, Bettenbrock K, Gilles ED (2008) A feed-forward loop guarantees robust behavior in Escherichia coli carbohydrate uptake. Bioinformatics 24: 704–710. doi: 10.1093/bioinformatics/btn010
|
[5] | Le D-H, Kwon Y-K (2013) A coherent feedforward loop design principle to sustain robustness of biological networks. Bioinformatics 29: 630–637. doi: 10.1093/bioinformatics/btt026
|
[6] | Kwon Y-K, Cho K-H (2008) Coherent coupling of feedback loops: a design principle of cell signaling networks. Bioinformatics 24: 1926–1932. doi: 10.1093/bioinformatics/btn337
|
[7] | Kwon Y-K, Choi S, Cho K-H (2007) Investigations into the relationship between feedback loops and functional importance of a signal transduction network based on Boolean network modeling. BMC Bioinformatics 8: 384. doi: 10.1186/1471-2105-8-384
|
[8] | Le D-H, Kwon Y-K (2011) The effects of feedback loops on disease comorbidity in human signaling networks. Bioinformatics 27: 1113–1120. doi: 10.1093/bioinformatics/btr082
|
[9] | Rodrigo G, Elena SF (2011) Structural Discrimination of Robustness in Transcriptional Feedforward Loops for Pattern Formation. PLoS ONE 6: e16904. doi: 10.1371/journal.pone.0016904
|
[10] | Hayot F, Jayaprakash C (2005) A feedforward loop motif in transcriptional regulation: induction and repression. Journal of Theoretical Biology 234: 133–143. doi: 10.1016/j.jtbi.2004.11.010
|
[11] | Smoot ME, Ono K, Ruscheinski J, Wang P-L, Ideker T (2011) Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 27: 431–432. doi: 10.1093/bioinformatics/btq675
|
[12] | Le D-H, Kwon Y-K (2011) NetDS: A Cytoscape plugin to analyze the robustness of dynamics and feedforward/feedback loop structures of biological networks. Bioinformatics.
|
[13] | Kauffman S, Peterson C, Samuelsson B, Troein C (2003) Random Boolean network models and the yeast transcriptional network. Proceedings of the National Academy of Sciences 100: 14796–14799. doi: 10.1073/pnas.2036429100
|
[14] | Shmulevich I, L?hdesm?ki H, Dougherty ER, Astola J, Zhang W (2003) The role of certain Post classes in Boolean network models of genetic networks. Proceedings of the National Academy of Sciences 100: 10734–10739. doi: 10.1073/pnas.1534782100
|
[15] | Faure A, Naldi A, Chaouiya C, Thieffry D (2006) Dynamical analysis of a generic Boolean model for the control of the mammalian cell cycle. Bioinformatics 22: e124–131. doi: 10.1093/bioinformatics/btl210
|
[16] | Kwon Y-K, Cho K-H (2007) Boolean Dynamics of Biological Networks with Multiple Coupled Feedback Loops. Biophysical Journal 92: 2975–2981. doi: 10.1529/biophysj.106.097097
|
[17] | Albert R (2004) Boolean Modeling of Genetic Regulatory Networks. Lecture Notes in Physics 650: 459–481. doi: 10.1007/978-3-540-44485-5_21
|
[18] | Huang S, Ingber DE (2000) Shape-Dependent Control of Cell Growth, Differentiation, and Apoptosis: Switching between Attractors in Cell Regulatory Networks. Experimental Cell Research 261: 91–103. doi: 10.1006/excr.2000.5044
|
[19] | Ferrell JE Jr, Machleder EM (1998) The Biochemical Basis of an All-or-None Cell Fate Switch in Xenopus Oocytes. Science 280: 895–898. doi: 10.1126/science.280.5365.895
|
[20] | Bhalla US, Ram PT, Iyengar R (2002) MAP Kinase Phosphatase As a Locus of Flexibility in a Mitogen-Activated Protein Kinase Signaling Network. Science 297: 1018–1023. doi: 10.1126/science.1068873
|
[21] | Pomerening JR, Sontag ED, Ferrell JE (2003) Building a cell cycle oscillator: hysteresis and bistability in the activation of Cdc2. Nature Cell Biology 5: 346–351. doi: 10.1038/ncb954
|
[22] | Li F, Long T, Lu Y, Ouyang Q, Tang C (2004) The yeast cell-cycle network is robustly designed. Proceedings of the National Academy of Sciences of the United States of America 101: 4781–4786. doi: 10.1073/pnas.0305937101
|
[23] | Ciliberti S, Martin OC, Wagner A (2007) Robustness Can Evolve Gradually in Complex Regulatory Gene Networks with Varying Topology. PLoS Computational Biology 3: e15. doi: 10.1371/journal.pcbi.0030015
|
[24] | Huang S, Eichler G, Bar-Yam Y, Ingber DE (2005) Cell Fates as High-Dimensional Attractor States of a Complex Gene Regulatory Network. Physical Review Letters 94: 128701. doi: 10.1103/physrevlett.94.128701
|
[25] | Kitano H (2004) Biological robustness. Nature Reviews Genetics 5: 826–837. doi: 10.1038/nrg1471
|
[26] | Kitano H (2004) Cancer as a robust system: implications for anticancer therapy. Nature Reviews Cancer 4: 227–235. doi: 10.1038/nrc1300
|
[27] | Yeger-Lotem E, Sattath S, Kashtan N, Itzkovitz S, Milo R, et al. (2004) Network motifs in integrated cellular networks of transcription–regulation and protein–protein interaction. Proceedings of the National Academy of Sciences of the United States of America 101: 5934–5939. doi: 10.1073/pnas.0306752101
|
[28] | Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, et al. (2002) Network Motifs: Simple Building Blocks of Complex Networks. Science 298: 824–827. doi: 10.1126/science.298.5594.824
|
[29] | Kim J-R, Yoon Y, Cho K-H (2008) Coupled Feedback Loops Form Dynamic Motifs of Cellular Networks. Biophysical Journal 94: 359–365. doi: 10.1529/biophysj.107.105106
|
[30] | Kim D, Kwon Y-K, Cho K-H (2007) Coupled positive and negative feedback circuits form an essential building block of cellular signaling pathways. BioEssays 29: 85–90. doi: 10.1002/bies.20511
|
[31] | Yang J, Park Y, Zhang H, Xu X, Laine GA, et al. (2009) Feed-forward signaling of TNF-{alpha} and NF-{kappa}B via IKK-{beta} pathway contributes to insulin resistance and coronary arteriolar dysfunction in type 2 diabetic mice. American Journal of Physiology Heart and Circulatory Physiology 296: H1850–1858. doi: 10.1152/ajpheart.01199.2008
|
[32] | Kim D, Kwon Y-K, Cho K-H (2008) The biphasic behavior of incoherent feed-forward loops in biomolecular regulatory networks. BioEssays 30: 1204–1211. doi: 10.1002/bies.20839
|
[33] | Zecca M, Struhl G (2010) A Feed-Forward Circuit Linking Wingless, Fat-Dachsous Signaling, and the Warts-Hippo Pathway to Drosophila Wing Growth. PLoS Biology 8: e1000386. doi: 10.1371/journal.pbio.1000386
|
[34] | Barabási A-L, Albert R (1999) Emergence of Scaling in Random Networks. Science 286: 509–512. doi: 10.1126/science.286.5439.509
|
[35] | Erd?s P, Rényi A (1959) On random graphs, I. Publicationes Mathematicae (Debrecen). 6: 290–297.
|
[36] | Maslov S, Sneppen K, Alon U (2002) Correlation profiles and motifs in complex networks. Handbook of Graphs and Networks: Wiley-VCH Verlag GmbH & Co. KGaA. pp. 168–198.
|
[37] | Maslov S, Sneppen K (2002) Specificity and Stability in Topology of Protein Networks. Science 296: 910–913. doi: 10.1126/science.1065103
|
[38] | Shen-Orr SS, Milo R, Mangan S, Alon U (2002) Network motifs in the transcriptional regulation network of Escherichia coli. Nat Genet 31: 64–68. doi: 10.1038/ng881
|
[39] | Sakata S, Komatsu Y, Yamamori T (2005) Local design principles of mammalian cortical networks. Neuroscience Research 51: 309–315. doi: 10.1016/j.neures.2004.11.004
|
[40] | Cui Q, Purisima E, Wang E (2009) Protein evolution on a human signaling network. BMC Systems Biology 3: 21. doi: 10.1186/1752-0509-3-21
|
[41] | Mangan S, Zaslaver A, Alon U (2003) The Coherent Feedforward Loop Serves as a Sign-sensitive Delay Element in Transcription Networks. Journal of Molecular Biology 334: 197–204. doi: 10.1016/j.jmb.2003.09.049
|
[42] | Kalir S, Mangan S, Alon U (2005) A coherent feed-forward loop with a SUM input function prolongs flagella expression in Escherichia coli. Mol Syst Biol 1.
|
[43] | Ozbudak EM, Becskei A, van Oudenaarden A (2005) A System of Counteracting Feedback Loops Regulates Cdc42p Activity during Spontaneous Cell Polarization. Developmental cell 9: 565–571. doi: 10.1016/j.devcel.2005.08.014
|
[44] | Weiner OD, Neilsen PO, Prestwich GD, Kirschner MW, Cantley LC, et al. (2002) A PtdInsP3- and Rho GTPase-mediated positive feedback loop regulates neutrophil polarity. Nat Cell Biol 4: 509–513. doi: 10.1038/ncb811
|
[45] | Keizer J, Li YX, Stojilkovi? S, Rinzel J (1995) InsP3-induced Ca2+ excitability of the endoplasmic reticulum. Molecular Biology of the Cell 6: 945–951. doi: 10.1091/mbc.6.8.945
|