Inherited haemoglobinopathies are the most common monogenic diseases, with millions of carriers and patients worldwide. At present, we know several hundred disease-causing mutations on the globin gene clusters, in addition to numerous clinically important trans-acting disease modifiers encoded elsewhere and a multitude of polymorphisms with relevance for advanced diagnostic approaches. Moreover, new disease-linked variations are discovered every year that are not included in traditional and often functionally limited locus-specific databases. This paper presents IthaGenes, a new interactive database of haemoglobin variations, which stores information about genes and variations affecting haemoglobin disorders. In addition, IthaGenes organises phenotype, relevant publications and external links, while embedding the NCBI Sequence Viewer for graphical representation of each variation. Finally, IthaGenes is integrated with the companion tool IthaMaps for the display of corresponding epidemiological data on distribution maps. IthaGenes is incorporated in the ITHANET community portal and is free and publicly available at http://www.ithanet.eu/db/ithagenes.
References
[1]
Modell B, Darlison M (2008) Global epidemiology of haemoglobin disorders and derived service indicators. Bull World Health Organ 86: 480–487. doi: 10.2471/blt.06.036673
[2]
Cappellini M-D, Cohen A, Eleftheriou A, Piga A, Porter J, et al.. (2008) Guidelines for the clinical management of thalassaemia. 2nd ed. Nicosia: Thalassaemia International Federation. 202 pp.
[3]
Thein SL (2005) Genetic modifiers of beta-thalassemia. Haematologica 90: 649–660.
[4]
Henderson S, Timbs A, McCarthy J, Gallienne A, Van Mourik M, et al. (2009) Incidence of haemoglobinopathies in various populations - the impact of immigration. Clin Biochem 42: 1745–1756 doi:10.1016/j.clinbiochem.2009.05.012.
[5]
Thein SL (2008) Genetic modifiers of the beta-haemoglobinopathies. Br J Haematol 141: 357–366 doi:10.1111/j.1365-2141.2008.07084.x.
[6]
Thein SL (2013) The molecular basis of β-thalassemia. Cold Spring Harbor Perspectives in Medicine 3: a011700 doi:10.1101/cshperspect.a011700.
[7]
Papasavva TE, Lederer CW, Traeger-Synodinos J, Mavrou A, Kanavakis E, et al. (2013) A minimal set of SNPs for the noninvasive prenatal diagnosis of β-thalassaemia. Ann Hum Genet 77: 115–124 doi:10.1111/ahg.12004.
[8]
Papasavva T, van IJcken WFJ, Kockx CEM, van den Hout MCGN, Kountouris P, et al. (2013) Next generation sequencing of SNPs for non-invasive prenatal diagnosis: challenges and feasibility as illustrated by an application to β-thalassaemia. European Journal of Human Genetics 21: 1403–1410 doi:10.1038/ejhg.2013.47.
[9]
Thorisson GA, Muilu J, Brookes AJ (2009) Genotype-phenotype databases: challenges and solutions for the post-genomic era. Nature Reviews Genetics 10: 9–18 doi:10.1038/nrg2483.
[10]
Sherry ST, Ward MH, Kholodov M, Baker J, Phan L, et al. (2001) dbSNP: the NCBI database of genetic variation. Nucleic Acids Res 29: 308–311 doi:10.1093/nar/29.1.308.
[11]
Hamosh A, Scott AF, Amberger J, Valle D, McKusick VA (2000) Online Mendelian Inheritance in Man (OMIM). Hum Mutat 15: 57–61 doi:;10.1002/(SICI)1098-1004(200001)15:1<57::?AID-HUMU12>3.0.CO;2-G.
[12]
Landrum MJ, Lee JM, Riley GR, Jang W, Rubinstein WS, et al. (2014) ClinVar: public archive of relationships among sequence variation and human phenotype. Nucleic Acids Res 42: D980–D985 doi:10.1093/nar/gkt1113.
[13]
Cooper DN, Ball EV, Krawczak M (1998) The human gene mutation database. Nucleic Acids Res 26: 285–287 doi:10.1093/nar/26.1.285.
[14]
Johnston JJ, Biesecker LG (2013) Databases of genomic variation and phenotypes: existing resources and future needs. Human Molecular Genetics 22: R27–R31 doi:10.1093/hmg/ddt384.
[15]
Claustres M, Horaitis O, Vanevski M, Cotton RGH (2002) Time for a unified system of mutation description and reporting: a review of locus-specific mutation databases. Genome Research 12: 680–688 doi:10.1101/gr.217702.
[16]
Fokkema IFAC, Taschner PEM, Schaafsma GCP, Celli J, Laros JFJ, et al. (2011) LOVD v.2.0: the next generation in gene variant databases. Hum Mutat 32: 557–563 doi:10.1002/humu.21438.
[17]
Howard HJ, Beaudet A, Gil-da-Silva Lopes V, Lyne M, Suthers G, et al. (2012) Disease-specific databases: why we need them and some recommendations from the Human Variome Project Meeting, May 28, 2011. Vol. 158A: 2763–2766 doi:10.1002/ajmg.a.35392.
[18]
Bertram L, McQueen MB, Mullin K, Blacker D, Tanzi RE (2007) Systematic meta-analyses of Alzheimer disease genetic association studies: the AlzGene database. Nature Genetics 39: 17–23 doi:10.1038/ng1934.
[19]
Basu SN, Kollu R, Banerjee-Basu S (2009) AutDB: a gene reference resource for autism research. Nucleic Acids Res 37: D832–D836 doi:10.1093/nar/gkn835.
[20]
Hulbert EM, Smink LJ, Adlem EC, Allen JE, Burdick DB, et al. (2007) T1DBase: integration and presentation of complex data for type 1 diabetes research. Nucleic Acids Res 35: D742–D746 doi:10.1093/nar/gkl933.
[21]
Hardison RC, Chui DHK, Giardine B, Riemer C, Patrinos GP, et al. (2002) HbVar: A relational database of human hemoglobin variants and thalassemia mutations at the globin gene server. Hum Mutat 19: 225–233 doi:10.1002/humu.10044.
[22]
Giardine B, Borg J, Higgs DR, Peterson KR, Philipsen S, et al. (2011) Systematic documentation and analysis of human genetic variation in hemoglobinopathies using the microattribution approach. Nature Genetics 43: 295–301 doi:10.1038/ng.785.
[23]
Patrinos GP, Giardine B, Riemer C, Miller W, Chui DHK, et al. (2004) Improvements in the HbVar database of human hemoglobin variants and thalassemia mutations for population and sequence variation studies. Nucleic Acids Res 32: D537–D541 doi:10.1093/nar/gkh006.
[24]
Giardine B, van Baal S, Kaimakis P, Riemer C, Miller W, et al. (2007) HbVar database of human hemoglobin variants and thalassemia mutations: 2007 update. Hum Mutat 28: 206 doi:10.1002/humu.9479.
[25]
Giardine B, Borg J, Viennas E, Pavlidis C, Moradkhani K, et al. (2014) Updates of the HbVar database of human hemoglobin variants and thalassemia mutations. Nucleic Acids Res 42: D1063–D1069 doi:10.1093/nar/gkt911.
[26]
Lederer CW, Basak AN, Aydinok Y, Christou S, El-Beshlawy A, et al. (2009) An electronic infrastructure for research and treatment of the thalassemias and other hemoglobinopathies: the Euro-mediterranean ITHANET project. Hemoglobin 33: 163–176 doi:10.1080/03630260903089177.
[27]
Huisman THJ, Carver MFH, Efremov GD (1996) A Syllabus of Human Hemoglobin Variants. 2nd ed. Augusta, GA, USA: The Sickle Cell Anemia Foundation.
[28]
Huisman THJ, Carver MFH, Baysal E (1997) A Syllabus of Thalassemia Mutations. Augusta, GA, USA: The Sickle Cell Anemia Foundation.
[29]
Steinberg MH, Forget BG, Higgs DR, Weatherall DJ (2009) Disorders of Hemoglobin. 2nd ed. Cambridge University Press. 1 pp.
[30]
Old J, Angastiniotis M, Eleftheriou A, Galanello R, Harteveld CL, et al.. (2013) Prevention of Thalassaemias and Other Haemoglobinopathies. 2nd ed. Nicosia, Cyprus: Thalassaemia International Federation.
[31]
Higgs DR (2013) The molecular basis of α-thalassemia. Cold Spring Harbor Perspectives in Medicine 3: a011718 doi:10.1101/cshperspect.a011718.
[32]
Mottaz A, David FPA, Veuthey A-L, Yip YL (2010) Easy retrieval of single amino-acid polymorphisms and phenotype information using SwissVar. Bioinformatics 26: 851–852 doi:10.1093/bioinformatics/btq028.
[33]
Thein SL, Menzel S, Lathrop M, Garner C (2009) Control of fetal hemoglobin: new insights emerging from genomics and clinical implications. Human Molecular Genetics 18: R216–R223 doi:10.1093/hmg/ddp401.
[34]
Danjou F, Anni F, Perseu L, Satta S, Dessì C, et al. (2012) Genetic modifiers of β-thalassemia and clinical severity as assessed by age at first transfusion. Haematologica 97: 989–993 doi:10.3324/haematol.2011.053504.
[35]
NCBI Resource Coordinators (2014) Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 42: D7–D17 doi:10.1093/nar/gkt1146.
[36]
Wang J, Kong L, Gao G, Luo J (2013) A brief introduction to web-based genome browsers. Briefings in Bioinformatics 14: 131–143 doi:10.1093/bib/bbs029.
[37]
Benson DA, Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, et al. (2014) GenBank. Nucleic Acids Res 42: D32–D37 doi:10.1093/nar/gkt1030.
[38]
UniProt Consortium (2014) Activities at the Universal Protein Resource (UniProt). Nucleic Acids Res 42: D191–D198 doi:10.1093/nar/gkt1140.
[39]
Gray KA, Daugherty LC, Gordon SM, Seal RL, Wright MW, et al. (2013) Genenames.org: the HGNC resources in 2013. Nucleic Acids Res 41: D545–D552 doi:10.1093/nar/gks1066.
[40]
Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, et al. (2000) The Protein Data Bank. Nucleic Acids Res 28: 235–242 doi:10.1093/nar/28.1.235.